Закономерности наследования признаков

Основные закономерности наследственности, законы Менделя (Таблица)

Закономерности наследования признаков

Наследственность — это свойство организмов передавать следующему поколению свои признаки и особенности развития, т. е. воспроизводить себе подобных. Каждый вид растений и животных сохраняет в ряду поколений характерные для него черты.

У человека и высокоорганизованных животных наследственные признаки передаются через половые клетки (яйцеклетки и сперматозоиды); у растений и низкоорганизованных животных — не только через половые клетки, но и при бесполом (споры) и вегетативном размножении.

Таблица основные закономерности наследственности

Грегор Мендель установил закономерности наследования, а не наследственности. Признаки, передающиеся от поколения к поколению, он назвал наследственными зачатками, так как о гене тогда еще не существовало понятия.

Закономерности наследственностиФормулировка законаСхема скрещивания
Первый закон Менделя. Правило единообразия первого поколения или закон доминирования.Грегор Мендель, 1865г.При моногибридном скрещивании у гибридов первого поколения (F1) проявляются только доминантные признаки — оно фенотипически и генотипически единообразно
Второй закон Менделя. Закон расщепленияГрегор Мендель, 1865г.При самоопылении гибридов первого поколения в потомстве происходит расщепление признаков в отношении 3:1 — образуются две фенотипические группы (доминантная и рецессивная); 1:2:1 — три генотипические группы
Третий закон Менделя. Дигибридное скрещивание. Закон независимого наследования.Грегор Мендель, 1865г.Первое дигибридное скрещиваниеВторое дигибридное скрещиваниеРешетка ПеннетаПри дигибридном скрещиваниии у гибридов каждая пара признаков наследуется независимо друг от друга и образует различные сочетания. Образуются четыре фенотипические группы в соотношении:9 : 3 : 3 : 1 или 9A_B_:3A_bb:3aaB_:1aabbв отличие от второго закона, который справедлив, когда изучаемые гены находятся в разных парах всегда, третий закон относится только к случаям независимого наследования, гомологичных хромосом
Анализирующее скрещивание – скрещивание испытуемого организма с гомозиготным по исследуемому признаку в целях выяснения его генотипаВариант гомозигонтности особи с доминантным признакомЕсли при скрещивании особи с доминантным генотипом с рецессивной гомозиготной особью полученное потомство единообразно, значит, исследуемая особь является доминантной гомозиготой по данному признаку Если при скрещивании особи с доминантным генотипом с рецессивной гомозиготной особью, полученное потомство дает расщепление 1:1, значит исследуемая особь является доминантной гетерозиготой по данному признаку
Вариант гетерозиготности анализируемой особи
Закон сцепленного наследования Е. Морган, 1911г. Сцепленное наследование – совместное наследование генов, сосредоточенных в одной хромосоме, гены образуют группы сцепленияБез кроссинговераС кроссинговеромСцепленные гены, локализованные в одной хромосоме, наследуются совместно, не давая независимого распределения. Группы генов находящиеся в одной хромосоме, называют группами сцепления Число групп сцепления соответствуют гаплоидному набору хромосом. Нарушение сцепленного наследования происходит в результате кроссинговера. В этом случае происходит появление особей с иными сочетаниями признаками -кроссверных; их количество всегда значительно меньше и зависит от расстояния между генами в хромосоме. Чем оно больше, тем чаще происходит перекрест между генами
Наследование признаков, сцепленных с полом. Признаки, гены которых расположены в половой хромосоме, называются сцепленными с поломНаследование сцепленного с полом гена гемофилии – h, нормальный ген – НЕсли рецессивный ген, определяющий проявление признака, локализован в женской хромосоме, то женщина является носителем, а проявление признака происходит у мужчин. Рецессивный признак передается от матерей сыновьям и проявляется, а от отцов -дочерям, и они становятся носителями гена (например, гемофилия, дальтонизм)
Гипотеза чистоты гамет.Грегор Мендель, 1856г.Находящиеся в данном организме пары альтернативных признаков (желтая и зеленая окраска) не смешиваются при образовании гамет, по одному из каждой пары переходят в них в чистом виде
Закон гомологических рядов наследственной изменчивостиВавиловН.И., 1920г.Генетически близкие виды и роды характеризуются сходными рядами наследственной изменчивости

_______________

Источник информации:  Весь курс школьной программы в схемах и таблицах: биология /-СПб., 2007.

Источник: https://infotables.ru/biologiya/75-obshchaya-biologiya/1168-zakonomernosti-nasledstvennosti

Урок 41. закономерности наследственности – Естествознание – 11 класс – Российская электронная школа

Закономерности наследования признаков

Естествознание, 11 класс

Урок 41. «Закономерности наследственности»

Перечень вопросов, рассматриваемых в теме:

– Какой смысл вкладывают в понятия «ген», «генотип», «фенотип», «аллельные гены», «сцепленное наследование»?

– Каковы закономерности наследования признаков с использованием законов Г. Менделя?

– Каковы основные положения хромосомной теории наследственности Т. Моргана?

– Каковы механизмы независимого и сцепленного наследования признаков?

– Какие существуют причины нарушения групп сцепления признаков?

Глоссарий по теме:

Генетика – это наука о закономерностях реализации живыми организмами наследственности и изменчивости.

Наследственность – способность живых организмов сохранять и передавать потомству в ряду поколений особенности физиологического строения и развития. Через механизм наследственности сохраняются признаки вида живых организмов.

Изменчивость – это способность живых организмов изменяться. Благодаря изменчивости особей в популяции сама популяция разнородна. Ч.

Дарвин выделил два типа изменчивости – ненаследственную (возникает у особи под влиянием факторов среды, не передается другим поколениям, например, развитые мышцы спортсмена не будут переданы его ребенку генетически) и наследственную (сопровождается изменением генотипа, например, возникает вследствие мутаций).

Ген — неделимая функционально единица генетического материала, участок молекулы ДНК, который кодирует первичную структуру полипептида. Ген — участок ДНК, определяющий возможность развития отдельного признака.

Генотип — совокупность генов организма.

Фенотип — это совокупность внешних и внутренних признаков организма.

Локус — положение (локализация) гена в хромосоме.

Аллельные гены — гены, которые расположены в идентичных локусах гомологичных хромосом.

Сцепленное наследование – это наследование признаков, гены которых локализованы (расположены) в одной хромосоме.

Основная и дополнительная литература по теме урока (точные библиографические данные с указанием страниц):

1. Естествознание. 11 класс [Текст]: учебник для общеобразоват. организаций: базовый уровень / И.Ю. Алексашина, К.В. Галактионов, И.С. Дмитриев, А.В. Ляпцев и др. / под ред. И.Ю. Алексашиной. – 3-е изд., испр. – М.: Просвещение, 2017. : с 158-163.

2. Глухов, М.М. Генетика человека с основами медицинской генетики. Пособие по решению задач: Учебное пособие / М.М. Глухов, И.А. Круглов. – СПб.: Лань, 2016. – -56-76 c.

Открытые электронные ресурсы по теме урока (при наличии);

Образовательный информационной ресурс «Лекции по общей биологии» / Раздел «Основные понятия генетики. Законы Менделя» URL: https://licey.net/free/6-biologiya/21-lekcii_po_obschei_biologii/stages/271-lekciya__17_osnovnye_ponyatiya_genetiki_zakony_mendelya.html

Теоретический материал для самостоятельного изучения

Все живые организмы обладают двумя свойствами, которые Ч. Дарвин, наряду с естественным отбором назвал механизмами эволюции: наследственностью и изменчивостью. Именно эти два свойства живых организмов изучает наука генетика.

Генетика – это наука о закономерностях реализации живыми организмами наследственности и изменчивости. Это достаточно молодая наука – датой ее рождения считается 1900 год, в котором три ученых Г. Де Фриз, К. Корренс и Э. Чермак в трех разных странах и независимо друг от друга «заново открыли» законы наследования признаков, которые монах Грегор Мендель еще в 1865 году.

Наследственность – это способность живых организмов сохранять и передавать потомству в ряду поколений особенности физиологического строения и развития. Через механизм наследственности сохраняются признаки вида живых организмов.

Изменчивость – это способность живых организмов изменяться. Благодаря изменчивости особей в популяции сама популяция разнородна. Ч.

Дарвин выделил два типа изменчивости – ненаследственную (возникает у особи под влиянием факторов среды, не передается другим поколениям, например, развитые мышцы спортсмена не будут переданы его ребенку генетически) и наследственную (сопровождается изменением генотипа, например, возникает вследствие мутаций).

Впервые гибридологический метод был разработан и использован Г. Менделем – при скрещивании сортов гороха с разными внешними признаками (один сорт имел гладкие и зеленые горошины, другой – желтые и морщинистые – наследование этих двух признаков при проведении скрещиваний и исследовал Г. Мендель).

Особенности гибридологического метода включают в себя:

1) Целенаправленный подбор родительских особей, которые различны по одной и более парам альтернативных и стабильных признаков.

2) Количественный строгий учет передачи признаков гибридам.

3) Индивидуальная оценка (количественный учет) потомства от каждого из скрещиваемых родителей в ряду поколений.

Г. Мендель, работая по данному методу скрещивал разные сорта гороха, имеющего гладкие и зеленые горошины и желтые и морщинистые, и сколько в следующем поколении выросло особей с разным типом горошин.

Подобное скрещивание, анализирующее наследование одной пары контрастных (альтернативных) признаков, называют моногибридным, при изучении наследования двух пар признаков — дигибридным, при исследовании нескольких пар признаков — полигибридным. Альтернативные признаки – это различные значения отдельного признака. В случае опытов Г. Менделя признаками были цвет горошин – зеленый или желтый, и форма – гладкие либо морщинистые.

Кроме гибридологического метода, генетики применяют такие методы, как близнецовый – исследование закономерностей проявления признаков у близнецов, генеалогический – анализ родословных, исследование хромосом (цитогенетический), популяционно-статистический метод – анализ генетической структуры популяций.

Г. Мендель изучал наследование признаков сорта гороха с желтыми и зелеными семенами и провел их искусственное опыление (удалил тычинки у одного сорта и опылил их пыльцой другого сорта). Все гибриды первого поколения, получившиеся у Менделя имели желтые семена.

Такой результат позволил Менделю вывести Первый закон, называемый также законом единообразия, – при скрещивании чистых линий гибриды первого поколения будут идентичны по фенотипу. Чистыми линиями Мендель обозначил гомозиготных особей – то есть особей, имеющих альтернативные гены одной молекулярной формы – либо только доминантные либо только рецессивные.

Особи, имеющие аллельные гены различной молекулярной формы (один – доминантным, другой — рецессивный) называют гетерозиготными.

Проявляющийся у гибридов признак Мендель назвал доминантным, а подавляемый — рецессивным. Данные термины используются до настоящего времени, равно, как и символика, введенная Менделем.

Рецессивные признаки принято обозначать строчными буквами (в алфавитном порядке, латинскими буквами, например а; в; с; и т.д., где а – один признак, в – второй), а доминантные – заглавными, например, А; В и т.д.

Родителей обозначают латинской буквой P, а поколения F1; 2 и т.д., где цифра обозначает порядковый номер поколения.

После того, как Мендель получившихся у него единообразных гибридов, во втором поколении он получил распределение признаков в соотношении 3:1, где 3 – доля организмов, у которых проявился доминантный признак, а 1 – доля организмов, у которых проявился рецессивный признак.

Этот результат позволил вывести второй закон Менделя, который гласит: при моногибридном скрещивании гетерозиготных особей у гибридов возникает расщепление признаков по фенотипу в отношении 3:1 (по генотипу 1:2:1, где 1 и 1 – гомозиготы «строго» доминантные и «строго» рецессивные, а 2 – гетерозиготы). Это позволило Менделю понять, что рецессивный признак у гибридов первого поколения при скрещивании не исчезает, а только подавляется и проявляется во втором поколении.

Анализируя полученное в дальнейшем потомство по нескольким признакам, Мендель пришел к выводу, что признаки при наследовании комбинируются во всех возможных комбинациях – этот постулат получил название третьего закона Менделя – закона независимого комбинирования признаков.

Каждый организм имеет множество признаков, в человеческом организме около 100 тыс. генов, а число хромосом невелико (для человека – 46 по 23 пары). Каждая хромосома несет не один, а группу генов, которые отвечают за развитие разных признаков.

Изучением процесса и закономерностей наследования признаков, гены которых локализованы (расположены) в одной хромосоме, занимался Томас Морган. Если Мендель проводил опыты на горохе, то для Т.

Моргана основным объектом его стала плодовая мушка дрозофила, которая отличается плодовитостью – каждый 2 недели может давать потомство, ввиду чего является удобным объектом для исследования изменения признаков в ряду поколений. Кроме того, дрозофила имеет всего 8 хромосом, что удобно для анализа.

Скрещивая мушку дрозофилу разных форм (особей с разной окраской тела и крыльев), Т.

Морган выяснил, что в потомстве преобладали особи с признаками родительских форм (по 40% на каждую родительскую форму), и только незначительная часть мушек имела несколько иное, чем у родителей, сочетание признаков (20%).

Такие результаты могли получиться только в том случае, если гены, которые отвечают за окраску тела и форму крыльев, находящихся в одной хромосоме – то есть сцепленные, которые наследуются «в связке». Морган назвал это группой сцепления.

Группа сцепления — это гены, локализованные (размещенные) в одной хромосоме и наследующиеся вместе. Количество групп сцепления в генотипе соответствует гаплоидному набору хромосом.

Сцепленное наследование – это наследование признаков, гены которых локализованы (расположены) в одной хромосоме. Сила сцепления генов зависит от расстояния между местами их расположения в хромосоме: чем дальше гены расположены друг от друга, тем ниже степень сцепления, чаще происходит кроссинговер (обмен участками хромосом) и наоборот.

Результатом исследований Т. Моргана стало создание хромосомной теории наследственности, которая включает следующие положения:

1. Гены расположены в хромосомах, разные хромосомы содержат разное количество генов, и набор генов негомологичных хромосом уникален.

2. Каждый ген имеет конкретное место расположения в хромосоме (локус); в идентичных локусах гомологичных хромосом расположены аллельные гены.

3. Гены локализованы в хромосомах в линейной последовательности.

4. Гены, расположенные в одной хромосоме, образуют группу сцепления и наследуются совместно, число групп сцепления соответствует гаплоидному набору хромосом и для каждого вида организмов постоянно.

5. Сцепление генов может быть нарушено в ходе кроссинговера, что приводит к формированию рекомбинантных хромосом. Частота осуществления кроссинговера зависит от расстояния между местами локализации генов: чем больше это расстояние, тем больше величина кроссинговера.

6. Каждый вид организмов имеет индивидуальный набор хромосом, называемый кариотипом.

Выводы:

Генетика – это наука о закономерностях реализации живыми организмами наследственности и изменчивости. Это достаточно молодая наука – датой ее рождения считается 1900 год, в котором три ученых Г. Де Фриз, К. Корренс и Э. Чермак в трех разных странах и независимо друг от друга «заново открыли» законы наследования признаков, которые монах Грегор Мендель еще в 1865 году.

Наследственность – это способность живых организмов сохранять и передавать потомству в ряду поколений особенности физиологического строения и развития. Через механизм наследственности сохраняются признаки вида живых организмов.

В широком смысле под свойством изменчивости понимают различия между особями одного вида, а также способность приобретать новые признаки в ряду поколений.

Основным методом генетики является гибридологический метод, который подразумевает проведение системы плановых скрещиваний, позволяющих проследить закономерности наследования различных признаков в ряду поколений.

Современные генетики руководствуются в работе хромосомной теорией наследственности:

1. Гены расположены в хромосомах, разные хромосомы содержат разное количество генов, и набор генов негомологичных хромосом уникален.

2. Каждый ген имеет конкретное место расположения в хромосоме (локус); в идентичных локусах гомологичных хромосом расположены аллельные гены.

3. Гены локализованы в хромосомах в линейной последовательности.

4. Гены, расположенные в одной хромосоме, образуют группу сцепления и наследуются совместно, число групп сцепления соответствует гаплоидному набору хромосом и для каждого вида организмов постоянно.

5. Сцепление генов может быть нарушено в ходе кроссинговера, что приводит к формированию рекомбинантных хромосом. Частота осуществления кроссинговера зависит от расстояния между местами локализации генов: чем больше это расстояние, тем больше величина кроссинговера.

6. Каждый вид организмов имеет индивидуальный набор хромосом, называемый кариотипом.

Примеры и разбор решения заданий тренировочного модуля:

1. Неделимая функционально единица генетического материала, участок молекулы ДНК, который кодирует первичную структуру полипептида называется:

1) Хромосома;

2) Аллель;

3) Ген.

Правильный ответ: 3) Ген.

2. Что из перечисленного не относится к постулатам Менделя:

1. Закон единообразия гибридов первого поколения.

2. Закон расщепления 3:1.

3. Закон независимого комбинирования признаков.

4. Положение о том, что гены локализованы в хромосомах в линейной последовательности.

5. Положение о том, что гены, расположенные в одной хромосоме, образуют группу сцепления

Правильный ответ:

4. Положение о том, что гены локализованы в хромосомах в линейной последовательности.

5. Положение о том, что гены, расположенные в одной хромосоме, образуют группу сцепления.

Источник: https://resh.edu.ru/subject/lesson/5530/conspect/

Закономерности наследственности и изменчивости. урок. Биология 10 Класс

Закономерности наследования признаков

К изучению предлагается тема «Закономерности наследственности и изменчивости». На этом уроке мы обобщим знания об основных генетических понятиях: наследственности и изменчивости.

Сформулируем определение основных генетических понятий: ген, локус, аллель, гомозигота и гетерозигота. Повторим три закона наследственности Менделя.

А также поговорим об основных видах изменчивости: наследственной, модификационной и мутационной, обсудим их роль в эволюции.

Наследственность – это способность живых организмов передавать неизменными свои признаки в поколениях.

Изменчивость – способность живых организмов приобретать признаки, отличающие их от родителей.

В середине XIX века ученые предположили в клетке наличие материального носителя наследственной информации о признаках (рис. 1), этот носитель получил название ген.

Рис. 1. Цепочка ДНК и хромосомы

Современная формулировка: ген – участок ДНК, кодирующий матричную РНК, содержащую информацию о первичной последовательности одного полипептида, или кодирующий функциональную РНК – рибосомальную, транспортную и другие.

Каждый ген имеет свою позицию в хромосоме, так называемый локус (рис. 2).

Рис. 2. Локус

Диплоидный организм (человек) содержит удвоенный набор хромосом, одна из которых поступает из материнского организма, а другая из отцовского, таким образом, в клетке имеется по две копии каждого гена (рис. 3).

Рис. 3. Удвоенный набор хромосом

Соответственно, в организме может быть одновременно два варианта генов, расположенных в одинаковых локусах гомологичных хромосом, такие варианты генов называются аллелями.

Организм, содержащий одинаковые аллели, называется гомозиготным, а содержащий разные аллели – гетерозиготным.

Потомки получают признаки от своих родителей в соответствии с основными законами наследования.

1-й закон Менделя. Закон единообразия гибридов первого поколения

При скрещивании двух гомозиготных организмов, которые отличаются одной парой признаков, все первое поколение будет единообразным по фенотипу и генотипу.

                P  AA x aa

                F1 Aa

2-й закон Менделя. Закон расщепления

При скрещивании двух гетерозиготных организмов у потомков наблюдается расщепление по фенотипу в соотношении 3 : 1 и по генотипу в соотношении 1 : 2 : 1.

                 P Aa x Aa

                 F1 1AA : 2Аа : 1Аа

3-й закон Менделя. Закон независимого наследования признаков при дигибридном скрещивании:

При скрещивании гомозиготных особей, которые отличаются двумя и большим количеством пар независимых признаков, фиксируют комбинирование признаков.

                  P AaBb x AaBb

                  F1 9AB : 3Abb : 3aaB : 1aabb

Нередко независимые признаки могут наследоваться вместе, это происходит, если соответствующие гены находятся в одной хромосоме, такое наследование называется сцепленным.

Изменчивость (рис. 4) требуется для лучшей приспособляемости к изменчивым факторам среды. Выделяют наследственную и модификационную изменчивость. Модификационная изменчивость не наследуется. Наследственная изменчивость может быть обусловлена половым процессом, тогда она будет называться комбинативной.

Основное предназначение разделения полов – это и есть обеспечение комбинативной изменчивости.

Рис. 4. Виды изменчивости

Второй тип наследственной изменчивости – мутационная. Мутация – это нарушение нуклеотидной последовательности молекулы ДНК – носителя генетической информации.

Мутации возникают случайно и ненаправленно, чаще всего они не приносят пользы организму, а оказываются губительными.

Иногда мутации приводят к остро необходимым изменениям, такие особи получают конкурентное преимущество, и заменившийся признак закрепляется в потомстве.

Комбинативная и мутационная изменчивость создают основу для естественного отбора. Модификационная изменчивость не закрепляется в потомстве, она представляет собой колебания значения признака в некоторых рамках (рис. 5), чаще всего модификациям подвержены количественные признаки – рост, вес, плодовитость.

Рис. 5. Колебание значения признака 

Листовые пластины могут в зависимости от условий среды достигать разных размеров, но эти размеры будут ограничены так называемой нормой реакции. Норма реакции обусловлена генетически и наследуется.

Аналогично цвет кожи европейца в зависимости от загара может меняться от молочно-белого до смуглого.

Величина модификационной изменчивости важна только для удобства конкретной особи, потомству она не передается, поэтому роль модификационной изменчивости в эволюционном процессе невелика.  

Список литературы

  1. Мамонтов С.Г., Захаров В.Б., Агафонова И.Б., Сонин Н.И.  Биология 11 класс. Общая биология. Профильный уровень. – 5-е издание, стереотипное. – Дрофа, 2010.
  2. Беляев Д.К. Общая биология. Базовый уровень. – 11 издание, стереотипное. – М.: Просвещение, 2012.
  3. Пасечник В.В., Каменский А.А., Криксунов Е.А. Общая биология, 10-11 класс.-  М.: Дрофа, 2005.
  4. Агафонова И. Б., Захарова Е. Т., Сивоглазов В. И. Биология 10-11 класс. Общая биология. Базовый уровень. – 6-е изд., доп. – Дрофа, 2010. 

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Интернет портал «prirodakem.narod.ru» (Источник)
  2. Интернет портал «intranet.tdmu.edu.ua» (Источник)
  3. Интернет портал «побиологии.рф» (Источник)

Домашнее задание

  1. Назовите основные генетические понятия.
  2. По каким законам Менделя мы получаем признаки от своих родителей?
  3. Что такое изменчивость и из каких видов она состоит?

Источник: https://interneturok.ru/lesson/biology/10-klass/osnovy-genetiki/zakonomernosti-nasledstvennosti-i-izmenchivosti

Закономерности наследования признаков

Закономерности наследования признаков

Признак — любая особенность организма, любое его качество или свойство, по которому можно отличить одну особь от другой.

Альтернативные признаки — взаимоисключающие варианты одного и того же признака (пример: желтая и зеленая окраска семян гороха).

Доминирование — преобладание у гибрида признака одного из его родителей.

Доминантный признак — преобладающий признак, появляющийся в первом поколении потомства у гетерозиготных особей и доминантных гомозигот (см. ниже).

Рецессивный признак — признак, который передается по наследству, но подавляется, не проявляясь у гетерозиготных потомков; проявляется в гомозиготном состоянии рецессивного гена.

Фенотип — совокупность всех внешних и внутренних признаков организма. Фенотип формируется при взаимодействии генотипа со средой обитания организма.

Аллельные, доминантные и рецессивные гены. Генотип

Аллель — одна из альтернативных форм существования гена, определяющего некоторый признак. Количество аллелей одного и того же гена может достигать нескольких десятков.
■ Каждая хромосома или хроматида может нести только один аллель данного гена.
■ В клетках одной особи присутствует только два аллеля каждого гена.

Локус — участок хромосомы, на котором расположен ген.

Аллельные гены — гены, расположенные в одних и тех же локусах гомологичных хромосом и отвечающие за альтернативные проявления одного и того же признака (пример: гены, отвечающие за цвет глаз человека). Аллельные гены обозначают одинаковыми буквами латинского алфавита: А, а; В, b.

Неаллельные гены — гены, расположенные в негомологичных хромосомах или в разных локусах гомологичных хромосом.

Доминантные гены — гены, соответствующие доминантным признакам; обозначаются прописными латинскими буквами (А, В).

Рецессивные гены — гены, соответствующие рецессивным признакам; обозначаются строчными латинскими буквами (а, b).

Генотип — совокупность всех генов данного организма.

Скрещивание

Скрещивание — получение потомства путем искусственного объединения генетического материала разных родителей (разных клеток) в одной клетке.

Генетическая запись скрещивания:

первая строка: буква Р (родители), генотип женского организма, знак скрещивания х, генотип мужского организма; под обозначениями генотипов могут быть указаны признаки организмов;

вторая строка: буква G (гаметы) и (под обозначениями генотипов, в кружочках) гаметы женской и мужской особей;

третья строка: буква Fk (потомки), генотипы потомков (под обозначениями генотипов могут быть указаны признаки организмов); к — номер поколения.

Гомозигота — зигота, содержащая одинаковые аллели одного гена — доминантные (АА, доминантная гомозигота) или рецессивные (аа, рецессивная гомозигота).

■ Гомозиготная особь образует один тип гамет и не дает расщепления при скрещивании.

Гетерозигота — зигота, содержащая два разных аллеля одного гена (Аа).

■ Гетерозиготная особь в потомстве дает расщепление по данному признаку. Образует несколько типов гамет.

Правило (гипотеза) чистоты гамет. Так как каждая хромосома или хроматида может нести только один аллель данного гена, то при расхождении хромосом (при первом делении мейоза) или хроматид (при втором делении мейоза) вместе с ними в гаплоидные клетки гамет отходит лишь по одному из аллелей каждой аллельной пары.

Поэтому: любая гамета организма несет только по одному аллелю каждого гена, т.е. аллели в гаметах не перемешиваются.

Следствия правила чистоты гамет:

гомозиготный организм образует только один тип гамет: 

гетерозиготный по одной паре генов организм образует два типа гамет (из двух гомологичных хромосом зиготы в процессе мейоза одна хромосома — с геном А — попадает в одну гамету, другая — с геном а — в другую гамету): 

Гибридизация — процесс скрещивания двух организмов одного вида (внутривидовая гибридизация) или разных видов или родов (отдаленная гибридизация).

Гибрид — организм, полученный путем скрещивания генетически разных организмов.

Моногибридное скрещивание — скрещивание организмов, отличающихся друг от друга альтернативными вариантами только одного признака (одной парой аллелей).

Анализирующее скрещивание — скрещивание изучаемого организма с организмом, имеющим рецессивный гомозиготный генотип (и образующим только один тип гамет с рецессивными аллелями). Позволяет установить генотип изучаемого организма. Применяется в селекции растений и животных.

Дигибридное скрещивание — скрещивание организмов, отличающихся друг от друга альтернативными вариантами двух признаков (двумя парами аллелей).

Полигибридное скрещивание — скрещивание организмов, отличающихся друг от друга альтернативными вариантами трех и более признаков.

Сцепленное наследование — совместное наследование генов, локализованных в одной хромосоме; гены образуют группы сцепления.

Расщепление признаков — проявляющееся среди потомства второго и последующих поколений определенное соотношение между количествами особей, характеризующихся альтернативными признаками исходных родительских форм.

■ Конкретные количественные соотношения между числами особей, несущими признаки каждой из родительских форм, определяются тем, каковы родительские организмы по данным признакам — гомозиготные или гетерозиготные.

Первый закон Менделя

Первый закон Менделя (закон единообразия гибридов первого поколения, или правило доминирования) описывает скрещивание гомозиготных особей: при скрещивании гомозиготных особей (взятых из чистых линий одного вида), отличающихся по одному из пары альтернативных признаков, получаемые гибриды первого поколения единообразны как по фенотипу, так и по генотипу.

Следствие: если первое поколение единообразно по одному из альтернативных признаков родительских особей, то данный признак является доминантным, а родительские особи гомозиготны по альтернативным признакам.

Второй закон Менделя

Второй закон Менделя (закон расщепления) описывает моно-гибридное скрещивание гетерозиготных особей: при скрещивании между собой гибридов первого поколения (т.е. гетерозиготных особей), отличающихся по одному из пары альтернативных признаков, во втором поколении наблюдается расщепление в соотношении 3 : 1 по фенотипу и 1 : 2 : 1 по генотипу.

Расщепление по фенотипу: три части потомков второго поколения с доминантным признаком и одна часть — с рецессивным.

Расщепление по генотипу: одна часть потомков — доминантные гомозиготы (АА), две части потомков — гетерозиготы (Аа) и одна часть — рецессивные гомозиготы (аа).

Следствия второго закона Менделя:

■ если потомство родительских особей дает расщепление по фенотипу, близкое к 3 : 1, то исходные родительские особи по данным аллелям гетерозиготны;

анализирующее скрещивание: если потомство родительских особей дает расщепление по фенотипу, близкое к 1 : 1, то одна из родительских особей была гетерозиготной, а другая — гомозиготной и несла пару рецессивных аллелей.

Третий закон Менделя

Третий закон Менделя (закон независимого наследования признаков) описывает дигибридное скрещивание особей: при скрещивании гомозиготных организмов, отличающихся по двум или нескольким парам признаков, во втором поколении наблюдается независимое наследование генов разных аллельных пар и соответствующих им признаков.

Т.е. каждая пара аллельных генов (и соответствующих им альтернативных признаков) наследуется независимо друг от друга (другая формулировка 3-го закона Менделя).

Определение возможных генотипов и вероятностей их появления у особей второго поколения: сначала определяется генотип первого поколения и тип его гамет Gf1 (см. таблицу),

после чего генотипы особей и вероятности их появления определяются с помощью решетки Пеннета .

Решетка Пеннета — таблица, с помощью которой изображают и анализируют расщепление независимо наследуемых признаков. По горизонтали в верхней строке этой решетки записываются женские гаметы, по вертикали в левом столбце — мужские гаметы, на пересечениях строк и столбцов — генотипы дочерних особей.

Пример: скрещивание гомозиготной особи гороха, характеризующейся двумя доминантными признаками — желтой окраской и гладкой формой семян, — с гомозиготной особью гороха, имеющей два альтернативных рецессивных признака — зеленую окраску и морщинистую форму семян.

Так как, согласно третьему закону Менделя, расщепление по каждому признаку идет независимо: по цвету (во втором поколении) в соотношении 3 : 1 (см.

второй закон Менделя), по форме — также в соотношении 3 : 1, то расщепление по фенотипу, т.е.

по комбинации признаков, наблюдается в соотношении (3 : 1)2 = 9 : 3 : 3 : 1 (девять частей из 16 составляют желтые гладкие семена, три части — желтые морщинистые, еще три части — зеленые гладкие и одну часть — зеленые морщинистые семена).

Из данных решетки Пеннета следует, что всего при дигибридном скрещивании гомозиготных особей (в частности, гороха) у особей второго поколения возможны девять различных генотипов (генотипических классов), которые распадаются на четыре фенотипических класса.

Потомки, доминантные по двум признакам (желтые гладкие семена гороха) имеют один из следующих генотипов (в скобках указана вероятность появления данного генотипа): ААВВ (1/16), ААВв (2/16), АаВВ (2/16) или АаВв (4/16); доминантные по первому и рецессивные по второму признаку (желтые морщинистые семена) — ААвв (1/16) или Аавв (2/16); рецессивные по первому и доминантные по второму признаку (зеленые гладкие семена) — ааВВ (1/16) или ааВв (2/16); рецессивные по обоим признакам — генотип аавв (1/16) (зеленые морщинистые семена).

❖ Расщепление по генотипу имеет вид:
■ при дигибридном скрещивании: (1:2:1)2;
■ при полигибридном скрещивании (1:2:1)n, где n — число расщепляющихся пар аллелей.

❖ Расщепление по фенотипу имеет вид:
■ при дигибридном скрещивании: (3 : 1)2 = 9 : 3 : 1;
■ при полигибридном скрещивании (3 : 1)n.

Следствия третьего закона Менделя:

■ если анализ расщепления по двум признакам дает по фенотипу соотношение, близкое к 9 : 3 : 3 : 1, то исходные родительские особи дигетерозиготны по этим признакам;

■ в общем случае каждый новый ген увеличивает число типов различных гамет в два раза, а число генотипов — в три раза. Следовательно, особь, гетерозиготная по п парам генов, может произвести 2” типов гамет и 3” различных генотипов;

■ число различающихся классов фенотипов равно числу различных типов гамет при наличии доминирования и числу различных генотипов в отсутствие доминирования.

Замечания:

■ третий закон Менделя, т.е. независимое комбинирование признаков, выполняется только при условии, что аллельные гены, определяющие эти признаки, находятся в разных парах гомологичных хромосом;

■ он не объясняет закономерности наследования генов, находящихся совместно в одной и той же хромосоме;

❖ Вычисление частоты определенного генотипа в потомстве родителей, отличающихся определенным числом независимо наследуемых генов:

■ сначала вычисляется вероятность появления соответствующего генотипа отдельно для каждой пары генов;

■ искомая частота равна произведению этих вероятностей. Пример: вычислить частоту генотипа АаЬЬСс в потомстве от скрещивания АаВbсс x АаВbСс.

Вероятность появления генотипа Аа в потомстве от скрещивания Аа x Аа равна 1/2; вероятность появления генотипа bb в потомстве от скрещивания Вb х Вb равна 1/4; вероятность появления генотипа Сс в потомстве от скрещивания Сс x сс равна 1/2.

Следовательно, вероятность появления генотипа АаbbСс составляет (1/2) х (1/4) х (1/2) = 1/16.

Условия выполнения и значение законов Менделя

Законы Менделя выполняются лишь в среднем, при большом числе однотипных опытов. Они являются следствием случайного сочетания гамет, несущих разные гены, и статистического характера наследования, определяемого большим числом равновероятных встреч гамет.

❖ Дополнительные условия, при которых выполняются законы Менделя:■ один ген должен контролировать только один признак, и один признак должен быть результатом действия только одного гена;■ доминирование должно быть полным;■ сцепление между генами должно отсутствовать;■ равновероятное образование гамет и зигот разного типа;■ равная вероятность выживания потомков с разными генотипами;

■ статистически большое количество скрещиваний.

Источник: https://esculappro.ru/zakonomernosti-nasledovaniya-priznakov.html

Books-med
Добавить комментарий