Регуляция артериального давления

Содержание
  1. Каковы механизмы регуляции артериального давления и почему оно становится выше нормы? Какие причины могут приводить к повышению артериального давления?
  2. Основные эффекты ангиотензина 2:
  3. Ренин-ангиотензиновая система (РАС)
  4. Почему же, все-таки, возникает гипертензия?
  5. Какова роль адреналина и норадреналина в развитии артериальной гипертензии?
  6. Вляние поваренной соли на АД
  7. Какие существуют в настоящее время гипотезы возникновения артериальной гипертензии?
  8. Регуляция артериального давления
  9. Регуляция артериального давления. Что такое РААС и ее роль в этом процессе
  10. Гемодинамические факторы формирования артериального давления
  11. Нейрогуморальная регуляция артериального давления
  12. Рецепторы кровеносных сосудов и предсердий
  13. Реакция нервной системы на резкое падение артериального давления
  14. Рецепторы предсердий, запускающие работу почек
  15. Прессорные механизмы регуляции артериального давления. Ренин-ангиотензин-альдостероновая система (РААС)
  16. Депрессорные механизмы регуляции артериального давления. Калликреин — кининовая система
  17. Регуляция артериального давления. Повышение артериального давления
  18. Артериального давления. Регуляторные механизмы, участвующие в поддержании параметра
  19. Регуляторные механизмы кратковременного действия
  20. Рефлекс на ишемию ЦНС
  21. Промежуточные (по времени) регуляторные механизмы
  22. Регуляторные механизмы длительного действия
  23. Почечная система контроля за объемом жидкости

Каковы механизмы регуляции артериального давления и почему оно становится выше нормы? Какие причины могут приводить к повышению артериального давления?

Регуляция артериального давления

После того как мы узнали классификацию и нормальные цифры артериального давления, так или иначе необходимо вернутся к вопросам физиологии кровообращения.

Артериальное давление у здорового человека, несмотря на значительные колебания в зависимости от физических и эмоциональных нагрузок, как правило, поддерживается на относительно стабильном уровне.

Этому способствует сложные механизмы нервной и гуморальной регуляции, которые стремятся вернуть артериальное давление к первоначальному уровню после окончания действия провоцирующих факторов. Поддержка артериального давления на постоянном уровне обеспечивается слаженной работой нервной и эндокринной систем, а также почек.

Все известные прессорные(повышающие давление) системы, в зависимости от длительности эффекта, подразделяются на системы:

  • быстрого реагирования(барорецепторы синокаротидной зоны, хеморецепторы, симпатоадреналовая система) — начинается в первые секунды и длится несколько часов;
  • средней длительности(ренин-ангиотензиновая) — включается через несколько часов, после чего ее активность может быть как повышенной, так и сниженной;
  • длительно действующие(натрий-объем-зависимая и альдостероновая) — могут действовать в течении продолжительного времени.

Все механизмы в определенной степени вовлечены в регуляцию деятельности системы кровообращения, как при естественных нагрузках, так и при стрессах.

Деятельность внутренних органов — головного мозга, сердца и других в высокой степени зависит от их кровоснабжения, для которого необходимо поддерживать артериальное давление в оптимальном диапазоне.

То есть, степень повышения АД и скорость его нормализации должны быть адекватны степени нагрузки.

При чрезмерно низком давлении человек склонен к обморокам и потере сознания. Это связано с недостаточным кровоснабжением головного мозга.

В организме человека существует несколько систем слежения и стабилизации АД, которые взаимно подстраховывают друг друга.

Нервные механизмы представлены вегетативной нервной системой, регуляторные центры которой расположены в подкорковых областях головного мозга и тесно связаны с так называемым сосудодвигательным центром продолговатого мозга.

Нервная регуляция АД

Необходимую информацию о состоянии системы эти центры получают от своего рода датчиков — барорецепторов, находящихся в стенках крупных артерий. Барорецепторы находятся преимущественно в стенках аорты и сонных артериях, снабжающих кровью головной мозг.

Они реагируют не только на величину АД, но и на скорость его прироста и амплитуду пульсового давления. Пульсовое давление — расчетный показатель, который означает разницу между систолическим и диастолическим АД. Информация от рецепторов поступает по нервным стволам в сосудодвигательный центр.

Этот центр управляет артериальным и венозным тонусом, также силой и частотой сокращений сердца.

При отклонении от стандартных величин, например, при снижении АД, клетки центра посылают команду к симпатическим нейронам, и тонус артерий повышается. Барорецепторная система принадлежит к числу быстродействующих механизмов регуляции, ее воздействие проявляется в течении нескольких секунд.

Мощность регуляторных влияний на сердце настолько велика, что сильное раздражение барорецепторной зоны, например, при резком ударе по области сонных артерий способно вызвать кратковременную остановку сердца и потерю сознания из-за резкого падения АД в сосудах головного мозга.

Особенность барорецепторов состоит в их адаптации к определенному уровню и диапазону колебаний АД. Феномен адаптации состоит в том, что рецепторы реагируют на изменения в привычном диапазоне давления слабее, чем на такие же по величине изменения в необычном диапазоне АД.

Поэтому, если по какой-либо причине уровень АД сохраняется устойчиво повышенным, барорецепторы адаптируются к нему, и уровень их активации снижается (данный уровень АД уже считается как бы нормальным).

Такого рода адаптация происходит при артериальной гипертензии, и вызываемая под влиянием применения медикаментов резкое снижение АД уже будет восприниматься барорецепторами как опасное снижение АД с последующей активизацией противодействия этому процессу.

При искусственном выключении барорецепторной системы диапазон колебаний АД в течении суток значительно увеличивается, хотя в среднем остается в нормальном диапазоне(благодаря наличию других регуляторных механизмов). В частности, столь же быстро реализуется действие механизма, следящего за достаточным снабжением клеток головного мозга кислородом.

Для этого в сосудах головного мозга имеются специальные датчики, чувствительные к напряжению кислорода в артериальной крови — хеморецепторы.

Поскольку наиболее частой причиной снижения напряжения кислорода служит уменьшение кровотока из-за снижения АД, сигнал от хеморецепторов поступает к высшим симпатическим центрам, которые способны повысить тонус артерий, а также стимулировать работу сердца. Благодаря этому, АД восстанавливается до уровня, необходимого для снабжения кровью клеток головного мозга.

Более медленно (в течении нескольких минут) действует третий механизм, чувствительный к изменениям АД — почечный. Его существование определяется условиями работы почек, требующих для нормальной фильтрации крови поддержание стабильного давления в почечных артериях. С этой целью в почках функционирует так называемый юкстагломерулярный аппарат (ЮГА).

При снижении пульсового давления, вследствие тех или иных причин, происходит ишемия ЮГА и его клетки вырабатывают свой гормон — ренин, который преращается в крови в ангиотензин-1, который в свою очередь, благодаря ангиотензинпреращающему ферменту (АПФ), конвертируется в ангиотензин-2, который оказывает сильное сосудосуживающее действие, и АД повышается.

Ренин-ангиотензиновая система (РАС) регуляции реагирует не столь быстро и точно, нервная система, и поэтому даже кратковременное снижение АД может запустить образование значительного количества ангиотензина-2 и вызвать тем самым устойчивое повышение артериального тонуса.

В связи с этим, значительное место в лечении заболеваний сердечно-сосудистой системы принадлежит препаратам, снижающим активность фермента, превращающего ангиотензин-1 в ангиотензин-2.

Последний, воздействуя на, так называемые, ангиотензиновые рецепторы 1-го типа, обладает многими биологическими эффектами.

Основные эффекты ангиотензина 2:

  • Сужение периферических сосудов
  • Выделение альдостерона
  • Синтез и выделение катехоламинов
  • Контроль гломерулярного кровообращения
  • Прямой антинатрийуретический эффект
  • Стимуляция гипертрофии гладкомышечных клеток сосудов
  • Стимуляция гипертрофии кардиомиоцитов
  • Стимуляция развития соединительной ткани (фиброз)

Одним из них является высвобождение альдостерона корковым веществом надпочечников. Функцией этого гормона является уменьшение выделения натрия и воды с мочой (антинатрийуретический эффект) и, соответственно, задержка их в организме, то есть, увеличение объема циркулирующей крови (ОЦК), что также повышает АД.

Ренин-ангиотензиновая система (РАС)

РАС, наиболее важная среди гуморальных эндокринных систем, регулирующих АД, которая влияет на две основные детерминанты АД — периферическое сопротивление и объем циркулирующей крови.

Выделяют два вида этой системы: плазменная(системная) и тканевая.

Ренин секретируется ЮГА почек в ответ на снижение давления в приносящей артериоле клубочков почек, а также при уменьшении концентрации натрия в крови.

Основное значение в образовании ангиотензина 2 из ангиотензина 1 играет АПФ, существует другой, независимый путь образования ангиотензина 2 — нециркулирующая «локальная» или тканевая ренин-ангиотензиновая паракринная система. Она находится в миокарде, почках, эндотелии сосудов, надпочечниках и нервных ганглиях и участвует в регуляции регионального кровотока.

Механизм образования ангиотензина 2 в этом случае связан с действием тканевого фермента — химазы. В следствии чего может уменьшаться эффективность ингибиторов АПФ, не влияющих на этот механизм образования ангиотензина 2. Следует отметить также, что уровень активации циркулирующей РАС не имеет прямой связи с повышением АД.

У многих больных (особенно пожилых) уровень ренина плазмы и ангиотензина 2 достаточно низкий.

Почему же, все-таки, возникает гипертензия?

Для того, чтобы это понять, нужно представить себе, что в организме человека есть, своего рода, весы на одной чаше которых находится прессорные(то есть повышающие давление) факторы, на другой — депрессорные(снижающие АД).

Гуморальные системы регуляции АД

В случае, когда перевешивают прессорные факторы, давление повышается, когда депрессорные — снижается. И в норме у человека эти весы находятся в динамическом равновесии, благодаря чему давление и удерживается на относительно постоянном уровне.

Какова роль адреналина и норадреналина в развитии артериальной гипертензии?

Наибольшее значение в патогенезе артериальной гипертензии отводится гуморальным факторам.

Мощной непосредственной прессорной и сосудосуживающей активностью активностью обладает катехоламины — адреналин и норадреналин, которые вырабатываются главным образом в мозговом веществе надпочечных желез.

Они же являются нейромедиаторами симпатического отдела вегетативной нервной системы. Норадреналин воздействует на, так называемые альфа-адренорецепторы и действует достаточно долго.

В основном сужаются периферические артериолы, что сопровождается повышением как систолического, так и диастолического АД. Адреналин возбуждая альфа- и бета-адренорецепторы(b1 — сердечной мышцы и b2 — бронхов), интенсивно, но кратковременно повышает АД, увеличивает содержание сахара в крови, усиливает тканевой обмен и потребность организма в кислороде, приводит к ускорению сердечных сокращений.

Вляние поваренной соли на АД

Кухонная или поваренная соль в избыточном количестве увеличивает объем внеклеточной и внутриклеточной жидкости, обуславливает отек стенки артерий, способствуя этим сужению их просвета. Повышает чувствительность гладких мышц к прессорным веществам и вызывает увеличение общего периферического сопротивления сосудов(ОПСС).

Какие существуют в настоящее время гипотезы возникновения артериальной гипертензии?

В настоящее время принята такая точка зрения, — причиной развития первичной (эссенциальной) является комплексное воздействие различных факторов, которые перечислены ниже.

Немодифицируемые:

  • возраст(2/3 лиц в возрасте более 55 лет имеют АГ, а если АД нормальное, вероятность развития в дальнейшем 90%)
  • наследственная предрасположенность(до 40% случаев АГ)
  • внутриутробное развитие(низкий вес при рождении). Кроме повышенного риска развития АГ, также риск связанных с АГ метаболических аномалий: инсулинрезистентность, сахарный диабет, гиперлипидемия, абдоминальный тип ожирения.

Модифицируемые факторы образа жизни(80% АГ связанно с этими факторами):

  • курение,
  • неправильное питание(переедание, низкое содержание калия, высокое содержание соли и животных жиров, низкое содержание молочных продуктов, овощей и фруктов),
  • избыточный вес и ожирение(индекс массы тела больше 25 кг/мт2, центральный тип ожирения — объем талии у мужчин более 102 см, у женщин более 88 см),
  • психосоциальные факторы(морально-психологический климат на работе и дома),
  • высокий уровень стресса,
  • злоупотребление алкоголем,
  • низкий уровень физических нагрузок.

Источник: https://bezgipertonii.ru/mehanizmy/

Регуляция артериального давления

Регуляция артериального давления

Подробности

Система регуляции артериального давления сложна и многокомпонентна. В данном материале мы в комплексе рассмотрим эту тему.

1. Регуляция кровообращения.

Механизмы регуляции давления подразделяются на системные и локальные:

Механизмы системной регуляции (регулируют уровень артериального давления):- нервные;- гуморальныеМеханизмы локальной (местной) регуляции:- эндотелий-зависимая регуляция;- метаболическая регуляция;- миогенный механизм. «Подправляют» влияние системных механизмов, исходя из нужд кровоснабжения конкретных органов и тканей

2. Мозговые артерии – артерии мышечного типа. Особенности их строения:Значительно меньшая толщина стенок при более мощном развитии внутренней эластической мембраны, чем в артериях др. органов;

Наличие в области развилки артерий своеобразных мышечно-эластических образований – подушек ветвления, участвующих в регуляции мозгового кровообращения.

Вены имеют очень тонкую стенку, без мышечного слоя и эластических волокон.

  • На головной мозг приходится 20% сердечного выброса
  • В среднем мозговой кровоток составляет 50 – 60  мл/100 г. в мин.
  • Критическое значение мозгового кровотока, при котором в мозгу наступают необратимые изменения, – 18-20 мл/100 г. в мин.
  • Мозг потребляет 35 – 45 мл/100 г. в мин. кислорода  и 115 г. глюкозы в сутки
  • Объем крови практически постоянен  и составляет 75мл.

3. СИМПАТИЧЕСКАЯ ИННЕРВАЦИЯ СОСУДОВ.

Источник иннервации – верхний шейный узел симпатического ствола
Эффект – снижение внутричерепного давления, обёма крови и продукции ликвора
Медиаторы – норадреналин, нейропептид Y, АТФ.

4. Авторегуляция кровотока:

а) Если уровень активности органа не изменяется, то кровоток через него поддерживается (более или менее) постоянным, несмотря на изменения артериального давления.

б) Распределение уровня кровотока: «Более» – в почке и в  головном мозге, «Менее» – в брыжейке, желудочно-кишечном тракте, жировой ткани.

в) Обеспечивает независимость кровотока через орган от колебаний системного АД

Механизмы:

1. Метаболический (наиболее характеренu000bдля головного мозга)

2. Миогенный (наиболее характерен для почки)

Ауторегуляция кровотока в мозговых артериях (CBF) в стабильном состоянии. Точечная линия – изменения под воздействием симпатической нервной системы.

5. Распределение кровотока по легким.

Неравномерно, зависит от положения грудной клетки в гравитационном поле Земли:В вертикальном положении – в легких выделяются 3 зоны (по соотношению давлений)В горизонтальном положении легкие оксигенируются равномерно

Гипоксическая вазоконстрикция. Наблюдается в легких.Возможный механизм:

снижение кислорода –> блокируются К-каналы –> деполяризация –> вход ионов кальция –> сокращение гладких мышц сосудов и пролиферации стенок сосудов.

6. Распределение кровотока в сердце.

Механические факторы играют существенную роль в коронарном кровотоке.

Трансмуральное давление в эпикарде меньше,чем в эндокардеКровоток:в диастолу > в эндокардев систолу > в эпикарде

Динамика изменения работы сердца при возрастающей нагрузке.

Увеличение производительности сердца в организме происходит за счёт изменения частоты сердцебиений и ударного объемаИзменения показателей работы сердца при физической работе на велоэргометре с возрастающей мощностью

7. Комплексная схема регуляции давления и сосудистого тонуса.

8. МЕХАНИЗМЫ РЕГУЛЯЦИИ АРТЕРИАЛЬНОГО ДАВЛЕНИЯ.

Быстрые (нейрогенные)
  • Барорецепторный рефлекс
  • Хеморецепторный рефлекс
  • Реакция Кушинга
Медленные
  • Ренин-ангиотензин-альдостероновая система
  • Рефлексы с рецепторов низкого давления
Сверхмедленные
  • Почечный функциональный механизм

Барорецепторный контроль артериального давления.

Афферентные пути от барорецепторов высокого давления.

А – иннервация каротидного синуса; Б – иннервация дуги аорты и аортальных телец.

Ответ барорецепторов  на повышение АД

Типичный синокаротидный рефлекс: изменение артериального давления при двустороннем сдавлении сонных артерий (после перерезки обоих блуждающих нервов)

Барорецепторы  дуги аорты и каротидного синуса («рецепторы высокого давления»)

Свободные нервные окончания, воспринимают растяжение стенки сосуда.

Взаимоотношения между давлением крови и импульсацией от единичного афферентного нервного волокна, идущего от каротидного синуса, при различных уровнях среднего артериального давления.

Cнижение пульсового давления в перфузируемых каротидных синусах уменьшает  импульсную активность от барорецепторов.

Афферентные и эфферентные пути барорефлекторной регуляции сердечно-сосудистой системы.

Влияние изменений давления в изолированных каротидных синусах на активность сердечных нервных волокон блуждающего и симпатического нервов собаки, находящейся под анестезией.

Немедленные реакции сердечно-сосудистой системы, вызванные снижением артериального давления.

9. Буферная роль барорефлекса: уменьшение отклонений артериального давления от среднего уровня («снижение вариабельности АД»).

Примеры регистрации АД у собак с интактными барорецепторами и через 2-3 недели после денервации барорецепторов дуги аорты и каротидных синусов
Гистограмма распределения значений АД, зарегистрированных в течение суток

10. Хеморецепторный контроль сердечно-сосудистой системы.

Слева – при отсутствии компенсации дыханием. Справа – при компенсации дыханием развивается тахикардия.

11. Нейроны гипоталамуса и коры головного мозга принимают участие в регуляции артериального давления.

12. Пример типичного синдрома белого халата – повышение больного у пациента при виде врача (зафиксировано суточным мониторированием артериального давления).

13. Суточная вариабельность артериального давления.

14. Механизмы кратковременной регуляции АД.

  • реализуются с участием автономной нервной системы;
  • «срабатывают» быстро (в течение нескольких секунд);
  • если уровень АД отклоняется надолго, адаптируются  и начинают регулировать АД на этом новом, измененном уровне
  1. Артериальный барорецепторный рефлекс
  2. Хеморефлекс
  3. Реакция на ишемию ЦНС (Реакция Кушинга)
Повышение АД в ответ на ишемию ЦНС. Реакция Кушинга в данном эксперименте вызвана повышением внутричерепного давления. Защитная роль: обеспечивает кровоснабжение мозга при кровопотере.Но: приводит  к нежелательному повышению АД при травме мозга, внутричерепных кровоизлияниях, отеке мозга.

15. РЕНИН-АНГИОТЕНЗИН- АЛЬДОСТЕРОНОВАЯ СИСТЕМА.

ЭФФЕКТЫ АНГИОТЕНЗИНА II

АТ1-рецепторыАТ2-рецепторы
  • Вазоконстрикция
  • Стимуляция симпатической нервной системы
  • Стимуляция продукции альдостерона
  • Гипертрофия кардиомиоцитов
  • Пролиферация гладких мышц сосудов
  • Вазодилатация
  • Натрийуретическое действие
  • Уменьшение пролиферации кардиомиоцитов и гладких мышц сосудов

Компенсаторное влияние ренин-ангиотензиновой системы на уровень артериального давления после тяжелой кровопотери (компенсаторная фаза геморрагического шока).

Ответы предсердных рецепторов низкого давления А- и В- типов.
Рецепторы типа А расположены преимущественно в полости правого предсердия; рецепторы типа В  локализованы в устье нижней и верхней полой вен.

Кардио-висцеральные рефлексы с рецепторов низкого давления.

16. Влияние различных гормонов на артериальное давление.

17. Долговременная регуляция АД осуществляется почечным механизмом.

Зависимость объёма мочи, выделяемого изолированной почкой, от величины артериального давления.

Длительно АД может иметь только такой уровень, при  котором скорость мочеотделения равна скорости поступления жидкости в организм.

Сравнительные возможности различных механизмов регуляции АД в разные временные периоды от начала резкого изменения уровня давления.
Возможности почечного механизма контроля над уровнем жидкости в организме не ограничены временными рамками, действие фактора начинается через несколько недель.

Эффективность почечного регуляторного механизма стремится к бесконечности.

Источник: http://fundamed.ru/nphys/60-nphys-ad.html

Регуляция артериального давления. Что такое РААС и ее роль в этом процессе

Регуляция артериального давления
Общий рейтинг статьи/Оценить статью [Всего : 6 Общая оценка статьи: 5]

Задумывались ли вы когда-нибудь о том, как происходит регуляция артериального давления? Скорей всего, этот вопрос не очень беспокоит людей, которые не имеют проблем с сердечно-сосудистой системой.

А вот любознательные гипертоники наверняка пытались уже понять, почему в их организме, где все должно работать слаженно и гармонично, вдруг “что-то пошло не так”. У всех людей в результате физической нагрузки, эмоциональных переживаний, или приема кофе повышается артериальное давление. Однако, довольно быстро оно приходит в норму.

Значит есть такие механизмы компенсации, которые возвращают давление к целевому уровню. Регуляция давления достаточно сложная, в ней участвуют разные механизмы. Как правило, эта тема описана в специализированной медицинской литературе, понять которую обычному человеку очень сложно.

В этой статье максимально просто и доступно описаны все механизмы формирования и регуляции артериального давления, изученные на сегодняшний день.

Сердце и сосуды как гидродинамическая система

Давайте представим нашу сердечно-сосудистую систему в виде аллегории. Допустим, сердце – это насос, кровеносные сосуды – водопроводные трубы, а кровь – вода. Система эта замкнутая, и вода циркулирует в ней постоянно. Насос выталкивает воду в трубы, и она, перемещаясь, создает определенное давление на стенки этих труб.

Есть такая модификация сердечно-сосудистой системы, которая очень напоминает описанную выше модель. Она предложена американскими учеными – физиологами:

Конечно, не все ученые не согласятся с такой упрощенной моделью сердечно-сосудистой системы, потому что не всегда ее работа подчиняется законам гемодинамики. Например, в физике, если уменьшить просвет трубы, жидкость начинает течь быстрее.

В организме же, наоборот, ток крови по капиллярам замедляется. Это связано с физиологической задачей крови. Для того, чтобы раздать тканям кислород и питательные вещества, и забрать углекислый газ и продукты обмена, ей необходимо задержаться.

 И это не единственный пример, где та или иная задача сердечно-сосудистой системы определяет ее работу и идет по законам физиологии, а не физики. Но не будем вдаваться в эти тонкости, ведь нам всего лишь нужно разобраться с основными принципами формирования и регуляции кровяного давления.

Итак, рассуждаем логически. Что будет оказывать влияние на давление воды на стенки водопроводных труб?

Естественно, насос. Чем быстрее и сильнее он будет накачивать воду, тем выше будет и ее давление.

Далеко не последнюю роль играет состояние труб. Они оказывают сопротивление воде. И конечно же, гладкая, упругая стенка дает меньшее сопротивление, чем ржавая труба с узким просветом.

Без сомнения, текучесть жидкости тоже оказывает влияние на давление. Очевидно, что вода быстрее будет проходить по трубе, чем кисель.

И напоследок, нужно отметить объем воды, который циркулирует в трубах. Чем больше объем циркулирующей жидкости, тем выше давление воды.

Перейдем от аллегории к реальным вещам, то есть к сердечно-сосудистой системе. Артериальное давление формируется и поддерживается благодаря взаимодействию двух групп факторов – гемодинамических и нейрогуморальных. Что это за факторы и как они связаны друг с другом, сейчас объясним.

Гемодинамические факторы формирования артериального давления

Гемодинамические факторы определяют величину артериального давления. Они полностью совпадают с теми, что мы только что разобрали для “водопроводной” модели сердечно-сосудистой системы. Давайте переведем все вышесказанное на медицинский язык.

Итак, на величину артериального давления влияют:

  1. Работа сердца – частота сердечных сокращений и объем крови, которое сердце выталкивает в сосуды.
  2. Состояние кровеносных сосудов. Для формирования артериального давления важны мелкие кровеносные сосуды – капилляры и артериолы. Их иначе называют периферическими кровеносными сосудами. Если просвет этих сосудов уменьшен или закупорен бляшками, тромбами – это вызывает рост артериального давления.
  3. Кровь, ее объем и вязкость.

Нейрогуморальная регуляция артериального давления

Итак, мы определились, что сердце и сосуды являются главными органами, которые определяют уровень артериального давления.

При увеличении частоты сердечных сокращений, и силы выталкивания крови, а также при сужении кровеносных сосудов давление повышается, а противоположный эффект – наоборот, его снижает.

Но как же сердце и сосуды понимают, в какой момент они должны отреагировать, чтобы изменить уровень артериального давления?

Существует сложная система регуляции артериального давления, которая состоит из разных компонентов. Эта регуляция названа сложным словом “нейрогуморальная” для того, чтобы отметить всех участников процесса – нервную систему, гормоны, ферменты и другие биологически активные вещества.

Рецепторы кровеносных сосудов и предсердий

Есть структуры, которые моментально, в течении считанных секунд реагируют на изменение артериального давления – специальные рецепторы, расположенные в стенке аорты, сонной артерии и предсердий.

  Одни рецепторы реагируют на изменение давления (барорецепторы), другие – на содержание кислорода, водорода и углекислого газа (хеморецепторы). Если снижается давление, то они тут же передают соответствующие импульсы в головной мозг. Он, в свою очередь, отправляет сигналы сердцу и сосудам.

В результате сердце начинает биться чаще, кровеносные сосуды сужаются и артериальное давление повышается.

Подобный эффект происходит при снижении уровня кислорода и повышении углекислого газа и водорода в крови – запускаются механизмы увеличения артериального давления и повышения легочной вентиляции для насыщения крови кислородом.

Реакция нервной системы на резкое падение артериального давления

При быстром и существенном падении артериального давления первой реагирует нервная система. Она очень чувствительна к недостатку кислорода, и поэтому незамедлительно передает сигналы в головной мозг. В результате – периферические кровеносные сосуды сужаются, и давление повышается. Такая ситуация может быть при массивных кровопотерях.

Рецепторы предсердий, запускающие работу почек

Еще одним механизмом снижения артериального давления является выведение “лишней жидкости” из организма. Вполне логично, что чем меньше крови будет циркулировать в системе, тем меньшее давление она будет оказывать на стенки сосудов.

При повышенном давлении кровь растягивает стенки предсердий, которые сигнализируют об этом головному мозгу. Мозг тут же приказывает почкам работать интенсивнее и выводить жидкость из организма.

Довольно часто “скачки” давления сопровождаются увеличением мочеиспускания.

Прессорные механизмы регуляции артериального давления. Ренин-ангиотензин-альдостероновая система (РААС)

Этим непростым названием именуют систему, которая состоит из разных гормонов и ферментов, принимающих участие в регуляции артериального давления. Ренин-ангиотензин — альдостероновая система была открыта в 50х годах 20 века, и это было настоящим прорывом в медицине.

Поскольку часть ее ключевых компонентов синтезируется в почках, стала понятна роль этого органа в регуляции артериального давления. Действительно, если посмотреть на причины гипертонической болезни, то заболевания почек занимают там далеко не последнее место. Но это еще не все.

В 80х годах 20 века было сделано сенсационное открытие о наличии компонентов РААС в других органах и тканях – сердце, мозге, сосудистой стенке, жировой ткани, поджелудочной железе. Было установлено и научно доказано, что нарушения работы РААС приводит не только к повышению артериального давления, но и к ожирению, сахарному диабету и сердечно-сосудистым заболеваниям.

Кроме того, многие лекарства, снижающие артериальное давление действуют на разные звенья этой системы. И для понимания механизма их работы мы должны разобрать ренин – ангиотензин — альдостероновую систему подробно.

В кровеносных сосудах почек расположены специальные клетки, которые называются довольно необычно — юкстагломерулярными клетками. Их функция похожа на функцию барорецепторов сердца и кровеносных сосудов – они выявляют уровень артериального давления. Как только оно падает, они начинают выделять гормон ренин, который запускает целый каскад биохимических реакций для повышения АД

Но не только низкое давление заставляет юкстагломерулярные клетки работать. Стресс активирует работу нервной системы, происходит выброс адреналина, и головной мозг посылает почкам сигнал вырабатывать больше ренина. Таким образом, наши эмоциональные переживания влияют на уровень артериального давления.

Стимулятором синтеза ренина является натрий. Почки способны улавливать концентрацию соли в моче, и если ее недостаточно, или наоборот очень много, то это повод для выработки большего количества ренина.

Печень также принимает участие в регуляции артериального давления. Она вырабатывает гормон, который называется ангиотензиноген. Важно отметить, что этот гормон находится в крови в бесполезном, неактивном виде, до тех пор, пока не встретится с ренином. Гормон почек отщепляет от ангиотензиногена участок и превращает его в активный ангиотензин I.

Дальше с помощью специального фермента, который вырабатывается клетками кровеносных сосудов, ангиотензин I превращается в ангиотензин II. Ранее считалось, что процесс этот может происходить только в легких, но благодаря новейшим исследованиям стало очевидно, что превращение ангиотензина I в ангиотензин II может происходить в кровеносных сосудах других органов и систем.

Ангиотензин II – очень активный гормон. Перечислим его эффекты:

  • Спазм кровеносных сосудов.
  • Активация симпатической нервной системы.
  • Угнетение выделительной функции почек, задержка натрия и воды в организме. В результате увеличивается объем циркулирующей крови, что дает дополнительную нагрузку на сердце.
  • Стимуляция выработки антидиуретического гормона (АДГ) гипофизом. Этот гормон сужает кровеносные сосуды и действует на почки, увеличивая тем самым объем циркулирующей крови. Также антидиуретический гормон активирует центр жажды.
  • Стимуляция выработки альдостерона надпочечниками. Альдостерон также влияет на почки и задерживает жидкость в организме.

Все эффекты ренин – ангиотензин – альдостероновой системы направлены на повышение артериального давления. Главную роль в этом механизме играют почки. Они, по сути, запускают процесс, который в конечном итоге сказывается на их работе.

Депрессорные механизмы регуляции артериального давления. Калликреин — кининовая система

В природе все должно быть уравновешено. И если ренин – ангиотензин — альдостероновая система повышает артериальное давление, значит должен быть механизм, снижающий его. Таким механизмом регуляции АД является калликреин -кининовая система. Опять-таки к ней имеют непосредственное отношение почки и плазма крови.

Почки вырабатывают неактивные белки кининогены, которые попадая в кровь активизируются другим белком – калликреином, в результате активные кинины – брадикинин и каллидин.

  Кинины взаимодействуют с сосудистой стенкой, вызывая выработку веществ, которые стимулируют расширение кровеносных сосудов – оксид азота, простациклин и простагландины. Кроме того, эти вещества стимулируют выделение воды и натрия почками, и снижают синтез гормонов — адреналина и норадреналина.

В результате, сосуды расширяются, учащается мочеиспускание, уменьшается объем циркулирующей жидкости, гормоны стресса адреналин и норадреналин прекращают стимулировать выработку ренина почками, и артериальное давление снижается.

Выводы:

Механизм, который возвращает повышенное или пониженное артериальное давление в норму, достаточно сложный.

Первыми реагируют рецепторы сердца и кровеносных сосудов, они отправляют сигналы о “неполадке” в мозг, а он моментально принимает решение, запуская целую цепочку реакций, в результате которых изменяется сердцебиение, тонус сосудов, выводится или задерживается жидкость, и давление нормализуется.

Учитывая то, что в этом процессе принимает участие чуть ли не весь организм, то иногда очень сложно бывает установить на каком же этапе произошел сбой. В арсенале современной медицины есть различные методы диагностики, но даже они не всегда позволяют разобраться, почему человек вдруг стал гипертоником.

Считается, что к стойкому повышению артериального давления приводит как генетическая предрасположенность, так и образ жизни – стрессы, вредные привычки, питание с большим количеством соли и жиров разрушают наши сосуды и нарушают работу сердца, а ведь именно они и определяют уровень давления. Некоторое время системы регуляции еще могут контролировать этот процесс, а потом происходит стойкое нарушение, которое требует вмешательства медицины.

Берегите сердце и сосуды, и ваше артериальное давление будет в норме!

Источник: https://medsimple.com.ua/regulyatsiya-arterialnogo-davleniya/

Регуляция артериального давления. Повышение артериального давления

Регуляция артериального давления

Пожалуй, самым главным назначением нервной регуляции кровообращения является способность нервных механизмов быстро повышать артериальное давление.

В этом случае в организме одновременно развивается общая сосудосуживающая реакция и резкое учащение сердечных сокращений, вызванное возбуждением симпатических нервных центров.

В то же время происходит реципрокное торможение ядер блуждающих нервов, посылающих к сердцу тормозные сигналы. Таким образом, включаются три основных механизма, каждый из которых приводит к увеличению артериального давления.

1. Сужаются практически все артериолы большого круга кровообращения. Это приводит к увеличению общего периферического сопротивления и, следовательно, к увеличению артериального давления.

2. Происходит значительное сужение вен (и других крупных сосудов большого круга кровообращения). Это приводит к перемещению большого объема крови из периферических кровеносных сосудов к сердцу.

Увеличение объема крови в полостях сердца вызывает их растяжение.

В результате растет сила сердечных сокращений и увеличивается систолический выброс крови, что тоже приводит к увеличению артериального давления.

3. Наконец, происходит усиление сердечной деятельности за счет прямого стимулирующего влияния симпатической нервной системы.

Так, увеличивается частота сердечных сокращений (иногда в 3 раза по сравнению с состоянием покоя); увеличивается сила сердечных сокращений, благодаря чему сердце начинает перекачивать больший объем крови.

При максимальной симпатической стимуляции сердце может перекачивать в 2 раза больше крови, чем в условиях покоя. Это тоже способствует быстрому повышению артериального давления.

Эффективность нервной регуляции артериального давления. Особо важной характеристикой нервных механизмов регуляции артериального давления является скорость развития ответной реакции, которая начинается уже через несколько секунд.

Очень часто всего за 5-10 сек давление может увеличиться в 2 раза по сравнению с состоянием покоя. И наоборот, внезапное торможение нервной стимуляции сердца и сосудов может уменьшить артериальное давление на 50% в течение 10-40 сек.

Таким образом, нервная регуляция артериального давления является наиболее быстрой из всех существующих механизмов регуляции.

Наглядным примером способности нервной системы быстро увеличивать артериальное давление является его рост при физической нагрузке. Физический труд требует существенного увеличения кровотока в скелетных мышцах.

Увеличение кровотока отчасти происходит под действием местных сосудорасширяющих факторов, которые появляются при усилении метаболизма в сокращающихся мышечных волокнах). Кроме того, подъем артериального давления происходит вследствие симпатической стимуляции всей системы кровообращения, связанной с выполнением физической нагрузки.

При очень тяжелой нагрузке артериальное давление увеличивается примерно на 30-40%, что приводит к увеличению кровотока почти в 2 раза.

Увеличение артериального давления во время физической нагрузки происходит следующим образом: при возбуждении двигательных центров головного мозга возбуждается также и активирующая часть стволовой ретикулярной формации, где в процесс возбуждения вовлекаются сосудосуживающая зона сосудодвигательного центра, а также латеральная его зона, стимулирующая симпатические влияния на сердечный ритм. Это приводит к увеличению артериального давления параллельно с усилением двигательной активности.

Во время стресса, вызванного другими причинами, также происходит рост артериального давления.

Например, в состоянии сильнейшего страха артериальное давление может увеличиться в 2 раза по сравнению с состоянием покоя всего за несколько секунд.

Развивается так называемая реакция тревоги, благодаря которой рост артериального давления способен резко увеличить кровоток в скелетных мышцах, сокращение которых может понадобиться для немедленного бегства от опасности.

– Также рекомендуем “Барорецепторный рефлекс. Роль барорецепторов в регуляции артериального давления”

Оглавление темы “Механизмы регуляции артериального давления”:
1. Влияние сосудодвигательного центра на сердце. Контроль сосудодвигательного центра
2. Симпатическая сосудосуживающая система. Эмоциональная слабость и обморок
3. Регуляция артериального давления. Повышение артериального давления
4. Барорецепторный рефлекс. Роль барорецепторов в регуляции артериального давления
5. Буферная функция барорецепторов. Механизмы поддержания давления барорецепторами
6. Влияние гипоксии на артериальное давление. Предсердные рефлексы регулирующие давление
7. Рефлексы Бейнбриджа. Ишемия головного мозга и артериальное давление
8. Реакция Кушинга. Участие скелетных мышц в регуляции давления
9. Дыхательные и физиологические колебания артериального давления
10. Почечная система. Регуляция артериального давления почками

Источник: https://meduniver.com/Medical/Physiology/609.html

Артериального давления. Регуляторные механизмы, участвующие в поддержании параметра

Регуляция артериального давления

Дополнительный блок информации:

Функциональные параметры кровообращения постоянно улавливаются рецепторами, расположен­ными в различных отделах сердечно-сосудистой системы. Афферентные импульсы от этих рецеп­торов поступают в сосудодвигательные центры про­долговатого мозга.

Эти центры посылают сигналы по эфферентным волокнам к эффекто­рам – сердцу и сосудам. Основные механизмы общей сердечно-сосуди­стой регуляции направлены на поддержание в сосудистой системе давления, необходи­мого для нормального кровотока.

Это осуществля­ется путем сочетанных изменений общего периферического сопротивления и сердечного выброса.

АД = МОК х ОПСС

МОК – минутный объем кровообращения

МОК = УОК (ударный объем) х ЧСС

УОК зависит от венозного возврата и сократимости миокарда

ОПСС – общее периферическое сопротивление сосудов

ОПСС зависит от вязкости крови и радиуса сосудов.

В зависимости от скорости развития адаптивных процессов все механизмы регуляции гемодинамики можно разделить на три группы:

1) механизмы кратковременного действия;

2) механизмы проме­жуточного (по времени) действия;

3) механизмы длительного действия.

Регуляторные механизмы кратковременного действия

К этим механизмам относятся преимущественно сосудодвигательные реакции нервного происхождения:

1) барорецепторные рефлексы  (рефлексы на растяжение рецепторов давления);

В стенках крупных внутригрудных и шейных артерий расположены многочисленные барорецепторы, возбуждающиеся при растяжении стенки сосуда под действием давления. Важнейшими барорецепторными зонами являются области дуги аорты и каротидного синуса. Чувствительные волокна от барорецепторов несут аффе­рентные импульсы к сосудодвигательному центру продолговатого мозга.

Эти импульсы оказывают тормозное влияние на симпатические центры и воз­буждающее на парасимпатические. В результате снижается тонус сосудов, а также частота и сила сокращений сердца. И то, и другое приводит к понижению артериального давления. При падении давления импульсация от барорецеп­торов уменьшается, и развиваются обратные про­цессы, приводящие в конечном счете к повышению давления.

2) хеморецепторные рефлексы;

Рефлексы с хеморецепторов аортальных и синокаротидных рецепторных зон активируются при снижении напряжения 02 и повышении напряжения СО2 (или увеличение концентрации ионов Н+) в крови.

Рефлекс на ишемию ЦНС

Реакция на ишемию ЦНС заключается в возбуждении сосудодвигательного центра продолговатого мозга и сопровождается сужением сосудов и повышением артериального давления.

Эта реакция возникает при недостаточном кровоснабжении головного мозга, падении артериального давления, снижении содержания кислорода в артериальной крови или нарушении мозгового кровообращения вследствие сосудистой патологии.

Общей чертой всех этих рефлекторных реакций является быстрое раз­витие (время рефлекса порядка нескольких секунд). Такие реакции достаточно интенсивны, однако при постоянном (в течение нескольких дней) раздраже­нии они либо полностью исчезают, либо ослабевают.

Нервные влияния дополняются действием гормоновв том числе адреналина, норадреналина.

 Мозговое вещество надпочечников иннервируется точно так же, как и симпатические ганглии, поэтому при различных воздействиях, приводящих к стимуляции симпатической системы, начинается усиленное выделение адренали­на и норадреналина из надпочечников. сердечный выброс увеличи­вается в результате повышения ударного объема и частоты сокращений сердца.

Промежуточные (по времени) регуляторные механизмы

К промежуточным (по времени) регуляторным механизмам относятся:

1) изменения транскапилляр­ного обмена;

2) релаксация напряжения стенок сосудов;

3) ренин-ангиотензиновая система.

Для того чтобы эти механизмы начали действовать, требуют­ся минуты, а для их максимального развития – часы.

Изменения транскапиллярного объема.

 Увеличение артериального и/или венозного давления, как правило, сопровождается повыше­нием давления в капиллярах; в результате фильтра­ция жидкости в интерстициальное пространство возрастает, а внутрисосудистый объем снижается.

Это снижение внутрисосудистого объема жидкости приводит к уменьшению артериального давления. Напротив, при падении давления происхо­дят обратные изменения: реабсорбция в капиллярах возрастает, артериальное давление повышается.

Релаксация напряжения в сосудистой стенке. Миогенная регуляция тонуса сосудов: расслабление стенок вен при увеличении венозного кровенаполнения.

Ренин-ангиотензиновая системаРенин – это фер­мент, который вырабатывается и хранится в клетках почек.

Выделение ренина увеличивается при снижении кровоснабжения почек любой этиологии – будь то в результате падения артериаль­ного давления, сужения почечных сосудов или их патологических изменений. Высвобождаясь в кровь, этот фермент расщепляет ангиотензиноген, синтезирующийся в печени.

В результате образуется пептид ангиотензин I. Под действием «конвертирующего фермента» плаз­мы ангиотензин I превращается в октапептид ангиотензин II; эта реакция протекает преимущест­венно в сосудах легких.

Ангиотензин II оказывает очень сильное прямое суживающее действие на артерии. В результате периферическое сопротивление и кровя­ное давление повышаются. Кроме того, ангиотен­зин II служит главным стимулятором выработки альдостерона в коре надпочечников.

Регуляторные механизмы длительного действия

В настоящее время к долговременной регуляции гемодинамики относят механизмы, влияющие глав­ным образом на соотношение между внутрисосудистым объемом крови и емкостью сосудов.

В норме объем внеклеточного водного пространства может изменяться только в результате изменения равновесия между суммарным потреблением жидко­сти (т.е. поступлением жидкости в желудочно-кишечный тракт за вычетом всех потерь воды, кроме выведения с мочой) и выделением жидкости почками.

В этой регуляции участвуют следующие механизмы:

1) по­чечная система контроля за объемом жидкости;

2) система вазопрессина;

3) система альдостерона.

Почечная система контроля за объемом жидкости

Повышение кровяного давленияимеет несколько основных следствий:

1) возрастает выведение жид­кости почками;

2) в результате увеличенного вы­ведения жидкости снижается объем внеклеточной жидкости и, следовательно,

3) уменьшается объем крови;

4) уменьшение объема крови приводит к снижению артериального давления.

При падении артериального давленияпроисходят обратные процессы: почечная экскреция уменьша­ется, объем крови возрастает, венозный возврат и сердечный выброс увеличиваются и артериальное давление вновь повышается.

Эффекты вазопрессина. Вазопрессин, или анти­диуретический гормон (АДГ), в средних и высоких дозах оказывает сосудосуживающее дей­ствие, наиболее выраженное на уровне артериол. Однако главным эффектом этого гормона является регуляция реабсорбции водыв дистальных канальцах почек. Влияя на выделение воды, вазопрессин влияет на артериальное давление.

Эффекты альдостерона. Альдостерон – гормон коркового вещества надпочечников влияет на работу почек. Альдостерон, влияя на почечные канальца, задерживает в организме натрий и, как следствие, воду. Чрезмерная продукция альдостерона приводит к значительной; задержке воды и солей и к гипертензии. При пониженной же выработке альдостерона наблюда­ется гипотензия.

Таким образом, против нарушений артериального давления и объема крови постоянно действуют три «линии обороны», каждая в свое время (по началу и продолжитель­ности).

При кратковременных колеба­ниях давления и объема крови включаются сосу­дистые реакции, при длительных же сдвигах пре­обладают компенсаторные изменения объема кро­ви.

В последнем случае сначала меняется содержа­ние в крови воды и электролитов, а при необходи­мости (в различные сроки) происходят и сдви­ги в содержании белков плазмы и клеточных элементов.

Вопросы для самостоятельной внеаудиторной работы студентов:

1. Характеристика артериального давления как пластичной константы организма.

2. Факторы, определяющие уровень кровяного давления.

3. Характеристика рецепторного аппарата, центров и исполнительных механизмов функциональной системы регуляции артериального давления: механизмы кратковременной, промежуточной, долговременной регуляции артериального давления.

  • Проанализируйте функциональную систему поддержания артериального давления крови. Перерисуйте схему, на схеме ФУС красным цветом выделите центр регуляции и прямые связи, синим – рецепторы и обратные связи.

Рис.8. Схема функциональной системы поддержания артериального давления на оптимальном для метаболизма уровне.

  • Письменно составьте таблицу по анализу механизмов регуляции артериального давления:
Краткосрочный механизмыПромежуточные механизмыДолгосрочные механизмы

Рекомендуемая литература:

  1. Лекционный материал.
  2. Логинов А.В. Физиология с основами анатомии человека. – М, 1983. – С. 192 – 198.
  3. Нормальная физиология (Курс физиологии функциональных систем) / Под ред. К.В.Судакова. – М., 1999. – С.175-200.

Не нашли то, что искали? Воспользуйтесь поиском:

Источник: https://studopedia.ru/5_53369_arterialnogo-davleniya-regulyatornie-mehanizmi-uchastvuyushchie-v-podderzhanii-parametra.html

Books-med
Добавить комментарий