ОСНОВНЫЕ ЗАКОНЫ ГЕНЕТИКИ

Законы генетики

ОСНОВНЫЕ ЗАКОНЫ ГЕНЕТИКИ

При рассмотрении основных законов генетики необходимо отметить, что они носят статистический характер, т.е. эти законы можно обнаружить при изучении очень большого количества объектов.

Так, изучив 10 особей данного вида, обнаружить тот или иной закон нельзя — слишком мало параллельных наблюдений.

Чем больше параллельных наблюдений будет сделано, тем четче и рельефнее будет проявляться тот или иной генетический закон.

Обзор законов генетики, открытых Г. Менделем

Используя гибридологический метод исследования, Г. Мендель открыл законы независимого наследования признаков. Эти законы были открыты при изучении закономерностей наследования у растений гороха, при этом применялось моногибридное и дигибридное скрещивание.

1. Первый закон Менделя — закон единообразия всех особей первого поколения для любого вида скрещивания (как моно-, так и полигибридного скрещивания): при любом скрещивании все особи первого поколения (F1) характеризуются одинаковым фенотипом по скрещиваемому признаку.

Этот фенотип определяется либо доминантным признаком, либо возникают промежуточные признаки, либо появляются новые признаки, как результат взаимодействия генов.

Так, при скрещивании гороха с желтыми и зелеными семенами в первом поколении все растения имеют желтые семена (доминантно-рецессивный характер наследования).

При скрещивании фиалки Ночная красавица с белыми и красным цветами все растения первого поколения имеют розовые цветы (промежуточный характер наследования).

Для скрещивания берут гомозиготные организмы. Например, материнский организм имеет гены желтого цвета семени (обозначим АА), а отцовский — гены зеленого цвета семени (обозначим аа). Тогда гаметы матери (яйцеклетки) содержат по одному гену желтого цвета семени (А) и гаметы отца (спермии) — по одному гену зеленого цвета семени (а).

При оплодотворении образуется гетерозигота, содержащая гены рассмотренных выше альтернативных признаков; обозначается Аа. Так как в данном случае наблюдается доминантно-рецессивный характер наследования признаков, все особи первого поколения (F1) имеют семена желтого цвета, т. е. характеризуются одинаковым фенотипом по данному признаку.

В случае равноценного характера взаимодействия генов наблюдается промежуточный характер наследования. В этом случае в тоже возникают гетерозиготные организмы (обозначенные А1А2) с одинаковым фенотипом по конкретному признаку. Так, при скрещивании фиалки Ночная красавица с белыми и красными цветами в F1 все растения имеют розовые цветы.

2. Второй закон Менделя — закон расщепления признаков (закон моногибридного скрещивания) — иногда его называют правилом расщепления признаков.

Этот закон справедлив для моногибридного скрещивания и проявляется при скрещивании разных особей, полученных при моногибридном скрещивании во втором поколении (F2): при скрещивании особей первого поколения, полученного после моногибридного скрещивания, у потомства наблюдается расщепление признаков в определенном количественном отношении, которое для доминантно-рецессивного наследования составляет 3:1, а для промежуточного наследования 1:2:1 (цифра 2 означает, что гибриды относятся к особям с промежуточным признаком).

Рассмотрим примеры.

1. Скрещивая растения гороха с гладкими семенами (F1 полученное после скрещивания растений с гладкими и морщинистыми семенами), получаем второе поколение (F2), при этом 3/4 потомства имеют гладкие семена, а 1/4 — морщинистые.

Это явление можно объяснить так. Растения первого поколения гетерозиготны (обозначим их Аа). Они дают два вида гамет (обозначим их А и а). Эти гаметы характерны и для отцовского, и для материнского организмов.

При реализации процессов оплодотворения возможны четыре сочетания (в них на первом месте стоит ген, полученный от организма матери, его выделим): АА, Аа, аА и аа.

Сочетание АА соответствует гомозиготе по доминантному признаку (гладкие семена); сочетания Аа и аА соответствуют гетерозиготе (гладкие семена), а последнее сочетание аа гомозиготно по рецессивному признаку. Таким образом, во втором поколении возникают три разных генотипа по данному признаку и им соответствует только два фенотипа.

2. Скрещивая растения фиалки с розовыми цветками (F1), получаем F2, в котором 1/4 часть потомства имеет белые цветки, 1/4 часть — красные, а половина потомства (2/4) — розовые. Объяснение этого явления такое же, как и для примера 1, но здесь наблюдаем разницу — трем генотипам по данному признаку (А1A1, А1А2 и А2А1; А2А2) соответствуют три фенотипа (белый, розовый и красный цветки).

3. Третий закон Менделя — закон полигибридного скрещивания или закон независимого расщепления признаков.

Этот закон проявляется во втором поколении при дигибридном и полигибридном (три-, тетра- и др.

) скрещивании: при скрещивании особей первого поколения, полученного при скрещивании по дигибридному (полигибридному) типу, в потомстве (во втором поколении) происходит расщепление признаков (для доминантно-рецессивного характера наследования) в количественном отношении, выражаемом формулой (3 + 1)n, где n = 2, 3, 4 и т. д.

Для цитологического объяснения удобно применять решетку Пеннета. Проанализируем сведения, приведенные на рисунке.

Сначала скрещивали растения вида горох обыкновенный с желтыми и гладкими семенами (ген желтого цвета семени обозначим А, а гладкой формы — В) с растениями, у которых были зеленые морщинистые семена (ген зеленого цвета семени обозначим а, ген морщинистой формы — b).

Все полученные растения первого поколения гетерозиготны и имеют желтые гладкие семена (доминантно-рецессивное наследование, при котором гены желтого цвета и гладкой поверхности семян доминируют над генами зеленого цвета и морщинистой формы). Назовите закон, проявившийся в данном случае.

После скрещивания растений первого поколения получили F2 — второе поколение, у которых наблюдаем закон независимого расщепления признаков: 1/16 часть всех растений имеет зеленые морщинистые семена, 3/16 — зеленые и гладкие; 3/16 — желтые и морщинистые, а остальные (9/16) — желтые и гладкие. Следовательно, при дигибридном скрещивании наблюдается появление в F2 четырех фенотипов (по данным признакам).

При дигибридном скрещивании каждое растение образует четыре вида гамет, а для двух родителей эти гаметы могут дать 16 сочетаний.

В результате получается, что 1/16 часть поколения является гомозиготной по рецессивному и столько же — по доминантному признакам, а все остальные особи гетерозиготны хотя бы по одному признаку; абсолютно гетерозиготных (по двум признакам) только 4/16 части поколения.

Подсчет показывает, что четырем фенотипам при дигибридном скрещивании соответствует девять фенотипов (сделайте этот подсчет самостоятельно).

Необходимо отметить, что третий закон Менделя справедлив, если гены, ведающие данными признаками, находятся в разных парах хромосом; так, ген окраски семени располагается в одной паре гомологических хромосом, а ген, определяющий форму семян, — в другой.

Вероятно, существуют случаи, когда гены, ведающие теми или иными признаками, содержатся в одной паре хромосом. Для таких вариаций законы Менделя (кроме первого) не применимы. Эти случаи подчиняются закону Моргана.

Закон Моргана — закон сцепленного наследования признаков

Ряд организмов имеет небольшое число хромосом, поэтому многие гены, определяющие различные группы альтернативных признаков, находятся в одной гомологичной паре хромосом, т.е. являются сцепленными и передаются потомству вместе. Так, у плодовой мушки дрозофилы ген, определяющий длину крыльев, и ген, ответственный за цвет тела, находятся в гомологичных хромосомах.

Дигибридное скрещивание, проведенное по данным признакам во втором поколении, не даст независимого расщепления признаков, т. е. не будет соответствовать третьему закону Менделя. Это явление обнаружил Т. Морган и сформулировал его в форме закона сцепленного наследования:

При дигибридном скрещивании организмов, у которых гены находятся в одной паре гомологичных хромосом, во втором поколении наблюдается расщепление признаков не по третьему, а по второму закону Менделя.

Скрещивая мушек дрозофил с темным цветом тела и нормальными крыльями (доминирующие признаки) с мушками, имеющими укороченные крылья и серое тело (рецессивные признаки), было получено гетерозиготное поколение (F1) с темными телами и нормальными крыльями.

При скрещивании особей первого поколения получили организмы, у которых 1/4 часть поколения имела укороченные крылья и серое тело, а 1/3 часть поколения — нормальные крылья и темное тело. Это объясняется тем, что гены окраски тела и длины крыльев располагаются в одной паре гомологических хромосом, т. е. являются сцепленными.

Однако среди особей F2 наблюдали и насекомых, имеющих темное тело и укороченные крылья, и особей с серым телом и нормальными крыльями. Это объясняется кроссинговером, при котором хромосомы в результате конъюгации и перекрещивания обмениваются участками гомологических хромосом.

Но эти явления носят случайный характер и не подчиняются математическим закономерностям.

Закон гомологических рядов наследственной изменчивости

В процессе изучения закономерностей наследования мутационной (наследственной) изменчивости Н. И. Вавилов открыл закон, известный в науке под названием закона гомологических рядов наследственной изменчивости, который был сформулирован следующим образом:

Если виды и роды генотипически связаны друг с другом, единством происхождения, то они образуют ряды форм организмов, сходных по своим признакам, т. е. гомологические ряды.

Так, пшеница, рожь, ячмень — это филогенетически близкие виды — роды класса однодольных покрытосеменных растений. Они являются злаками. В природе распространены остистые формы злаков, так как остистость является формой приспособления злаковых растений против поедания их животными.

Для практических нужд человек вывел безостые формы, которые для хозяйственной деятельности более удобны, чем остистые.

В процессе выведения безостых сортов злаков все эти три вида, принадлежащие к разным родам, прошли одинаковые этапы «искусственной эволюции», давая сходные промежуточные формы:

остистые формы → малоостистые формы → безостые формы.

Эти формы характерны и для пшеницы, и для ржи, и для ячменя.

Гомологические ряды известны не только для злаков, но и для других растений.

Анализирующее скрещивание

Как было показано выше, для выявления закономерностей наследования признаков необходимо первичному скрещиванию подвергать гомозиготные особи.

Однако фенотип по данному признаку не всегда является признаком гомозиготности данного организма, например горох с желтыми семенами может быть как гомозиготным (АА) по доминантному признаку, так и гетерозиготным (Аа).

Поэтому необходим метод выявления гомозиготности, которым является анализирующее скрещивание.

Для анализирующего скрещивания используют организмы, обладающие рецессивным альтернативным признаком, и эти организмы скрещивают с организмами, гомозиготность которых необходимо установить.

Если в первом поколении не происходит расщепления признаков, то данные организмы являются гомозиготными по доминантному признаку, в противном случае (в этом поколении появятся организмы, обладающие рецессивными признаками) — исследуемые организмы гетерозиготны.

Рассмотрим пример. При скрещивании морских свинок с короткой шерстью (рецессивный признак) (аа — обозначение родительского организма, который дает гаметы а) со свинками с длинной шерстью (доминантный признак) в первом поколении получили потомство с длинной шерстью.

Вывод — длинношерстные свинки являются гомозиготными (АА — обозначение родительского организма, который дает гаметы А), так как зигота первого поколения будет соответствовать обозначению Аа. Случай, когда длинношерстные свинки были гетерозиготными, охарактеризуйте самостоятельно.

Ответьте также на вопрос: можно ли для анализирующего скрещивания использовать гомозиготные организмы, обладающие доминантными признаками и почему? Докажите свой ответ, используя цитологические представления.

Взаимодействие генов

При изучении закономерностей наследования признаков необходимо учитывать характер воздействия одних генов на другие.

В предыдущих подразделах было показано, что аллельные гены оказывают определенное воздействие друг на друга, при котором наблюдается или доминантно-рецессивный характер взаимодействия, или при воздействии аллельных генов друг на друга возникает новый признак, промежуточный между исходными признаками — при одинаковом воздействии генов друг на друга.

В генетических исследованиях было обнаружено, что взаимодействовать между собой могут и неаллельные гены, и при их взаимодействии у организма появляются новые признаки, т.е. возникает новый фенотип.

Так, при скрещивании кур с розовидным и ореховидным гребнями получили первое потомство кур с гороховидными гребнями.

Скрещивание особей друг с другом привело к расщеплению признаков не по второму закону Менделя (как это предполагалось, ведь внешне скрещивание было моногибридным), а по третьему закону — закону независимого расщепления признаков.

Было обнаружено, что 1/16 часть потомства имела простой гребень, 3/16 — розовидный, 3/16 — ореховидный, а остальные (9/16) — гороховидный. Следовательно, розовидная и ореховидная формы гребня определяются не одним геном, а являются результатом взаимодействия двух неаллельных генов, так как характер расщепления признаков соответствует дигибридному скрещиванию.

Множественное действие генов

Генетиками было установлено, что один ген может влиять либо на отдельный конкретный признак, либо оказывать влияние на несколько признаков, т.е. иметь множественное действие.

Так, у водосбора имеется ген окраски цветка, при этом ген красной окраски оказывает влияние на окраску листьев (у водосбора с красными цветами листья фиолетовые).

Кроме того, этот ген оказывает влияние на длину стебля и массу семян — стебель у водосбора с красными цветами более длинный, а семена имеют большую массу, чем семена у водосбора с другой окраской цветка.

Мушка дрозофила имеет ген, определяющий цвет глаз. Если у дрозофилы содержится ген, вызывающий отсутствие пигмента в глазе, то эти мушки имеют малую плодовитость, более короткую продолжительность жизни и специфическую окраску внутренних органов.

Источник: https://www.polnaja-jenciklopedija.ru/biologiya/zakony-genetiki.html

Лекция по биологии на тему:

ОСНОВНЫЕ ЗАКОНЫ ГЕНЕТИКИ

Лекция 8.

ГЕНЕТИКА. ОСНОВНЫЕ ПОНЯТИЯ.

ЗАКОНЫ ГРЕГОРА МЕНДЕЛЯ

Генетика – это наука о наследственности и изменчивости организмов. Занимает ведущее место в современной биологической науке. Реализация наследственного материала осуществляется за счет обособленных, или дискретных частиц – генов.

Ген– единица наследственности, определяющая от­дельный признак организма.Характер проявления действия гена может изменяться в различных ситуациях и под вли­янием различных факторов.

Свойства гена:

  • дискретность в своем действии, т. е. обособлен в своей активности от других генов;
  • специфичность в своем проявлении, т. е. отвечает за строго определенный признак;
  • градуальность действия, т. е. может уси­ливать степень проявления признака при увеличении числа доминантных аллелей (дозы гена);
  • плейотропность, т.е. один ген может влиять на развитие разных призна­ков — это множественное, или плейотропное, действие гена;
  • взаимодействие с другими генами, что приводит к появлению новых признаков. Такое взаимодей­ствие генов осуществляется опосредованно — через синте­зированные под их контролем продукты реакций;
  • модифицированное действие, которое характеризуется измене­нием его местонахождения в хромосоме (эффект положения) или воздействием различных факторов.

Альтернативные признакиконтрастные, исключающие друг друга признаки.

Аллельные гены – гены, определяющие развитие аль­тернативных признаков.Они располагаются в одинаковых локусах (местах) гомоло­гичных (парных) хромосом.

Если альтернативный признак и соответствующий ему ген, проявляются у гибридов первого поколения, то его называют доминантным,а не прояв­ляющийся (подавленный) – рецессивным.

Аллельные ге­ны принято обозначать одинаковыми буквами латин­ского алфавита: доминантный — заглавной буквой (А), а рецессивный — строчной (а).

Если в обеих гомологич­ных хромосомах находятся одинаковые аллельные гены (два доминантных — ААили два рецессивных — аа), та­кой организм называется гомозиготным,так как он обра­зует один тип гамет и не дает расщепления при скрещи­вании с таким же по генотипу организмом.

Если в гомо­логичных хромосомах локализованы разные гены одной аллельной пары (Аа), то такой организм называется ге­терозиготнымпо данному признаку. Он образует два ти­па гамет и при скрещивании с таким же по генотипу организмом дает расщепление.

Генотип – совокупность всех генов организма. Генотип представляет собой взаимодействующие друг с другом и влияющие друг на друга совокупности генов. Каждый ген испытывает на себе воздействие дру­гих генов генотипа и сам оказывает на них влияние, по­этому один и тот же ген в разных генотипах может про­являться по-разному.

Фенотип – совокупность всех свойств и признаков организма. Фенотип развивается на базе опре­деленного генотипа в результате взаимодействия с усло­виями внешней среды. Отдельный признак называется феном.

К фенотипическим при­знакам относятся не только внешние признаки (цвет глаз, волос, форма носа, окраска цветков и т. д.), но и анатомические (объем желудка, строение печени и т.п.

), биохимические (концентрация глюкозы и мочевины в сыворотке крови и т. д.) и др.

Чешский ученый Грегор Мендель (1822—1884), основы­ваясь на результатах своих экспериментов по скрещиванию различных сортов гороха, сформулировал закономерности, известные в настоящее время как «законы Менделя».

Основные закономерности наследования были изложены в его книге “Опыты над растительными гибридами” (1865).

Мендель проводил скрещивание растений гороха, при котором родитель­ские формы анализировались по одной паре альтерна­тивных признаков. Такое скрещивание называется моно­гибридным.Если у родительских форм учитываются две пары альтернативных признаков, скрещивание называет­ся дигибридным,более двух признаков — полигибридным.

Прежде чем проводить опыты, Г. Мендель получил чис­тые линии гороха с альтернативными признаками, т. е. гомозиготные доминантные (АА) и гомозиготные рецес­сивные (аа) особи, которые в дальнейшем скрещивались друг с другом.

Чистая линия – это совокупность особей, происходящих от одной гомозиготы или гомозиготной пары организмов по одним и тем же аллелям.

Запись скрещивания проводится следующим образом: в первой строке пишут букву Р (родители), далее генотип женского организма, знак скрещивания х и генотип мужского организма; во второй строке записывают букву С (гаметы) и гаметы женской и мужской особей, каждая гамета берется в кружочек; в третьей строке ставят букву Р (потомки) и записывают генотипы потомков:

При анализе результатов скрещивания оказалось, что все потомки в первом поколении одинаковы по феноти­пу (проявляется доминантный признак желтой окра­ски — закон доминирования) и генотипу (гетерозигот­ны), откуда и название первого закона Менделя(закон единообразия гибридов первого поколения, или закон доминирования). Он формулирует­ся следующим образом: при скрещивании гомозиготных особей, отличающихся по одной паре альтернативных признаков, наблюдается единообразие гибридов первого поколения как по фенотипу, так и по генотипу.

Второй закон Менделязакон расщепления.

Форму­лируется следующим образом: при скрещивании гибри­дов первого поколения наблюдается расщепление в со­отношении 3 : 1 по фенотипу и 1 : 2 : 1 по генотипу.

Каждая из гетерозигот образует по два типа гамет, т. е.

возможно получение четырех их сочетаний: 1) яйцеклет­ка с геном А оплодотворяется сперматозоидом с геном А — получится генотип АА, 2) яйцеклетка с геном А опло­дотворяется сперматозоидом с геном а — генотип Аа; 3) яйцеклетка с геном а оплодотворяется сперматозоидом с геном А — генотип Аа; 4) яйцеклетка с геном а оплодо­творяется сперматозоидом с геном а — генотип аа. Получаются зиготы: 1АА, 2Аа, 1аа, вероятность образования которых равная.

По фенотипу особи АА и Аа неотличимы (желтые), поэтому наблюдается расщепление в отноше­нии 3:1 (три части потомков с желтыми семенами и од­на часть — с зелеными).

По генотипу соотношение бу­дет: 1АА (одна часть — желтые гомозиготы) : 2Аа (две части — желтые гетерозиготы) : 1аа (одна часть — зеле­ные гомозиготы).

Допущение Менделя при моногибридном скрещивании: в половых клетках ген («наследственный задаток») должен находиться в единственном числе. Это положение Мендель назвал гипотезой «чистоты гамет»:

  • у гибридного организма гены не гибридизируются (не смешиваются) и находятся в чистом аллельном состоянии;
  • в процессе мейоза в гамету попадает только один ген из аллельной пары.

Гипотеза чистоты гамет устанавливает, что законы расщепления есть следствие случайного сочетания гамет, несущих разные гены.

В некоторых случаях необходимо установить генотип особи с доминантным признаком, так как при полном доминировании гомозигота (АА) и гетерозигота (Аа) фенотипически неотличимы.

Для этого применяют анализи­рующее скрещивание,при котором данный организм с неизвестным генотипом скрещивают с гомозиготным ре­цессивным по данной аллели. Возможны два варианта результатов скрещивания:

Если в результате такого скрещивания получено еди­нообразие гибридов первого поколения, то анализируе­мый организм является гомозиготным, а если вF1про­изойдет расщепление 1:1, то особь гетерозиготна. Анали­зирующее скрещивание широко применяется в селекции.

Изучив наследование одной пары аллелей, Мендель установил закономерности наследования при моногиб­ридном скрещивании и явление доминирования. Однако организмы отличаются по многим парам аллелей, поэто­му Мендель решил проследить наследование двух при­знаков одновременно.

С этой целью он использовал го­мозиготные растения гороха, отличающиеся по двум па­рам альтернативных признаков: семена желтые гладкие и зеленые морщинистые.

В результате такого скрещивания он получил расте­ния, у которых были желтые гладкие семена. Этот ре­зультат подтверждает, что первый закон Менделя (закон единообразия гибридов первого поколения) проявляется не только при моногибридном скрещивании, но и при ди- и полигибридном.

Полученные гибриды первого поколения (АаВЬ) будут давать четыре типа гамет в равном соотношении, так как в процессе мейоза из каждой пары генов в гамету попа­дает один ген, свободно комбинируясь с генами другой пары.

При оплодотворении каждая из четырех типов гамет одного организма случайно встречается с одной из гамет другого. Следовательно, возможно 16 вариантов их соче­тания. Для удобства записи пользуются решеткой Пеннета, в которой по горизонтали записывают женские гаме­ты, а по вертикали — мужские:

Легко подсчитать, что по фено­типу потомство делится на 4 группы: 9 частей желтых гладких (А-В-), 3 части желтых морщинистых (А-ЬЬ), 3 части зеленых гладких (ааВ-) и 1 часть зеленых мор­щинистых (ааЬЬ). (Запись А-В- обозначает, что если в генотипе есть хотя бы один доминантный ген, то независимо от второго гена в фенотипе проявится доминант­ный признак.

) Если учесть расщепление по одной паре признаков (желтый и зеленый цвет, гладкая и морщини­стая поверхность), то получится: 9+3 особи с желтыми (гладкими) и 3+1 особи с зелеными (морщинистыми) семенами. Их соотношение равно 12:4, или 3:1.

Следова­тельно, при дигибридном скрещивании каждая пара при­знаков в потомстве дает расщепление независимо от другой пары, как и при моногибридном скрещивании. При этом происходит случайное комбинирование генов (и соответствующих им признаков), приводящее к новым сочетаниям, которых не было у родительских форм.

В нашем примере исходные формы гороха имели желтые гладкие и зеленые морщинистые семена, а во втором по­колении получено не только такое сочетание признаков, как у родителей, но и формы с желтыми морщинистыми и зелеными гладкими семенами.

Отсюда следует третий закон Менделязакон незави­симого комбинирования признаков:при скрещивании гомо­зиготных особей, отличающихся по двум или нескольким парам альтернативных признаков, во втором поколении наблюдается независимое комбинирование генов разных аллельных пар и соответствующих им признаков.

Для проявления третьего закона Менделя необходимо соблюдение следующих условий:

  • доминирование должно быть полным (при неполном доминировании и других видах взаимодействия генов числовые соотношения по­томков с разными комбинациями признаков могут быть другими);
  • не должно быть летальных (приводящих к смерти) генов;
  • гены должны локализоваться в разных негомологичных хромосомах.

Опыты Менделя послужили основой для развития со­временной генетики — науки, изучающей два основных свойства организмов — наследственность и изменчивость. Ему удалось выявить закономерности наследования благо­даря принципиально новым методическим подходам.

Во-первых, Мендель удачно выбрал объект исследова­ния — горох, работая с которым он получил в течение нескольких поколений константные формы, подходящие для скрещивания.

Во-вторых, он проводил анализ наследования отдельных пар признаков в потомстве скрещиваемых растений, отли­чающихся по одной, двум и трем парам контрастных аль­тернативных признаков. В каждом поколении велся учет отдельно по каждой паре этих признаков.

В-третьих, он не просто зафиксировал полученные ре­зультаты, но и провел их математическую обработку.

Перечисленные простые приемы исследования составили принципиально новый, гибридологический метод изучения наследования. Совокупность генетических методов изучения наследования называют генетическим анализом.

Источник: https://infourok.ru/lekciya-po-biologii-na-temuosnovnie-ponyatiya-genetiki-zakoni-gregora-mendelya-klass-3166091.html

Законы Менделя

ОСНОВНЫЕ ЗАКОНЫ ГЕНЕТИКИ

В предыдущей статье мы познакомились с фундаментальными понятиями и методами генетики. Настало время их применить при изучении нового раздела – Менделевской генетики, основанной на законах, открытых Грегором Менделем.

Мендель следовал некоторым принципам в своих исследованиях, которые привели его работы к успеху:

  • Использовал гибридологический метод генетики, подвергая скрещиванию растения гороха с четко различающимися признаками: желтый – зеленый цвет семян, гладкая – морщинистая форма семян
  • Учитывал при скрещивании не всю совокупность признаков, а отдельные альтернативные признаки (желтый – зеленый цвет семян)
  • Вел количественный учет потомков в ряду поколений, анализировал потомство каждой особи
  • При размножении использовал чистые линии – группы растений, которые генетически однородны (гомозиготы AA, aa) и потомки которых не имеют разнообразия по изучаемому признаку

.

Введем несколько новых терминов, которые нам пригодятся. Скрещивание может быть:

  • Моногибридным – в случае если скрещиваемые особи отличаются только по одному исследуемому признаку (цвет семян)
  • Дигибридным – если скрещиваемые особи отличаются по двум различным признакам (цвет и форма семян)

В схеме решения генетическое задачи есть некоторые обозначения: ♀ – женский организм, ♂ – мужской организм, P – родительские организмы, F1 – гибриды первого поколения, F2 – гибриды второго поколения. Вероятно, имеет смысл сохранить картинку ниже себе на гаджет, если вы только приступаете к изучению генетики 😉

Спешу сообщить вам, что браки между людьми (в отличие от насильственного скрещивания гороха) происходят только по любви и взаимному согласию! Поэтому в задачах, где речь идет о людях, не следует ставить знак скрещивания “×” между родительскими особями. В таком случае ставьте знак “→” – “стрелу Амура”, чтобы привести в восхищение экзаменатора 🙂

Первый закон Менделя – закон единообразия

С него часто начинаются генетические задачи (в качестве первого скрещивания). Этот закон гласит о том, что при скрещивании гомозиготных особей, отличающихся одной или несколькими парами альтернативных признаков, все гибриды первого поколения будут единообразны по данным признакам.

Этот закон основан на варианте взаимодействия между генами – полном доминировании. При таком варианте один ген – доминантный, полностью подавляет другой ген – рецессивный. В эксперименте, который мы только что изучили, Мендель скрещивал чистые линии гороха с желтыми (АА) и зелеными (aa) семенами, в результате все потомство имело желтый цвет семян (Aa) – было единообразно.

Неполное доминирование

Помимо полного доминирования, существует неполное доминирование, которое характерно для некоторых генов. Известным примером неполного доминирования является наследование окраски лепестков у растения ночная красавица. В этом случае гены не полностью подавляют друг друга – проявляется промежуточный признак.

Обратите внимание, потомство F1 получилось также единообразным (возможен только один вариант – Aa), но фенотипически у гетерозиготы признак будет проявляться как промежуточное состояние (AA – красный, aa – белый, Aa – розовый). Это можно сравнить с палитрой художника: представьте, как смешиваются красный и белый цвета – получается розовый.

Второй закон Менделя – закон расщепления

“При скрещивании гетерозиготных гибридов (Aa) первого поколения F1 во втором поколении F2 наблюдается расщепление по данному признаку: по генотипу 1 : 2 : 1, по фенотипу 3 : 1”

Скрещивая между собой гибриды первого поколения (Aa) Мендель обнаружил, что в потомстве особей с доминантным признаком (AA, Aa – желтый цвет семян) примерно в 3 раза больше, чем особей с рецессивным (aa).

Искренне желаю того, чтобы вы научились сами определять расщепление по генотипу и фенотипу. Это сделать не сложно: когда речь идет о генотипе, обращайте внимание только на гены (буквы), то есть если перед вами особи AA, Aa, Aa, aa – следует брать генотипы по очереди и складывать количество одинаковых генотипов. Именно в результате таких действий соотношение по генотипу получается 1:2:1.

Если перед вами стоит задача посчитать соотношение по фенотипу, то вообще не смотрите на гены – это только запутает! Следует учитывать лишь проявление признака. В потомстве получилось 3 растения с желтым цветом семян и 1 с зеленым, следовательно, расщепление по фенотипу 3:1.

Третий закон Менделя – закон независимого наследования

В нем речь идет о дигибридном скрещивании, то есть мы исследуем не один, а два признака у особей (к примеру, цвет семян и форма семян). Каждый ген имеет два аллеля, поэтому пусть вас не удивляют генотипы AaBb 🙂 Важно заметить, что речь в данном законе идет о генах, которые расположены в разных хромосомах.

Запомните III закон Менделя так: “При скрещивании особей, отличающихся друг от друга по двум (и более) парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга, комбинируясь друг с другом во всех возможных сочетаниях.

Комбинации генов отражаются в образовании гамет. В соответствии с правилом, изложенным выше, дигетерозигота AaBb образует 4 типа гамет: AB, ab, Ab, aB. Повторюсь – это только если гены находятся в разных хромосомах. Если они находятся в одной, как при сцепленном наследовании, то все протекает по-другому, но это уже предмет изучения следующей статьи.

Каждая особь AaBb образует 4 типа гамет, возможных гибридов второго поколения получается 16. При таком обилии гамет и большом количестве потомков, разумнее использовать решетку Пеннета, в которой вдоль одной стороны квадрата расположены мужские гаметы, а вдоль другой – женские. Это помогает более наглядно представить генотипы, получающиеся в результате скрещивания.

В результате скрещивания дигетерозигот среди 16 потомков получается 4 возможных фенотипа:

  • Желтые гладкие – 9
  • Желтые морщинистые – 3
  • Зеленые гладкие – 3
  • Зеленые морщинистые – 1

Очевидно, что расщепление по фенотипу среди гибридов второго поколения составляет: 9:3:3:1.

Пример решения генетической задачи №1

Доминантный ген отвечает за развитие у человека нормальных глазных яблок. Рецессивный ген приводит к почти полному отсутствию глазных яблок (анофтальмия). Гетерозиготы имеют глазное яблоко малых размеров (микрофтальмия). Какое строение глазных яблок будет характерно для потомства, если оба родителя страдают микрофтальмией?

Обратите внимание на то, что доминирование генов неполное: человек с генотипом Aa будет иметь промежуточное значение признака – микрофтальмию. Поскольку доминирование неполное, то расщепление по генотипу и фенотипу совпадает, что типично для неполного доминирования.

В данной задаче только ¼ потомства (25%) будет иметь нормальные глазные яблоки. ½ часть потомства (50%) будет иметь глазное яблоко малых размеров – микрофтальмию, и оставшаяся ¼ (25%) будут слепыми с почти полным отсутствием глазных яблок (анофтальмией).

Не забывайте, что генетика, по сути, теория вероятности. Очевидно, что в жизни в такой семье может быть рождено 4 подряд здоровых ребенка с нормальными глазными яблоками, или же наоборот – 4 слепых ребенка. Может быть как угодно, но мы с вами должны научиться говорить о “наибольшей вероятности”, в соответствии с которой с вероятностью 50% в этой семье будет рожден ребенок с микрофтальмией.

Пример решения генетической задачи №2

Полидактилия и отсутствие малых коренных зубов передаются как аутосомно-доминантные признаки. Гены, отвечающие за развитие этих признаков, расположены в разных парах гомологичных хромосом. Какова вероятность рождения детей без аномалий в семье, где оба родителя страдают обеими болезнями и гетерозиготны по этим парам генов.

Я хочу сразу навести вас на мысль о III законе Менделя (закон независимого наследования), который скрыт в фразе ” Гены … расположены в разных парах гомологичных хромосом”.

Вы увидите в дальнейшем, насколько ценна эта информация. Также заметьте, что речь в этой задаче идет о аутосомных генах (расположенных вне половых хромосом).

Аутосомно-доминантный тип наследования означает, что болезнь проявляется, если ген в доминантном состоянии: AA, Aa – болен.

В данном случае мы построим решетку Пеннета, которая сделает генотипы потомства более наглядными. Вы видите, что на потомстве буквально нет ни одного живого места: почти все 16 возможных потомков больны либо одним, либо другим заболеванием, кроме одного, aabb. Вероятность рождения такого ребенка очень небольшая 1/16 = 6.25%.

Пример решения генетической задачи №3

У голубоглазой близорукой женщины от брака с кареглазым мужчиной с нормальным зрением родилась кареглазая близорукая девочка и голубоглазый мальчик с нормальным зрением. Ген близорукости (A) доминантен по отношению к гену нормального зрения (a), а ген кареглазости (D) доминирует над геном голубоглазости (d). Какова вероятность рождения в этой семье нормального кареглазого ребенка?

Первый этап решения задачи очень важен. Мы учли описания генотипов родителей и, тем не менее, белые пятна остались. Мы не знаем гетерозиготна (Aa) или гомозиготная (aa) женщина по гену близорукости. Такая же ситуация и с мужчиной, мы не можем точно сказать, гомозиготен (DD) он или гетерозиготен (Dd) по гену кареглазости.

Разрешение наших сомнений лежит в генотипе потомка, про которого нам рассказали: “голубоглазый мальчик с нормальным зрением” с генотипом aadd. Одну хромосому ребенок всегда получает от матери, а другу от отца. Выходит, что такого генотипа не могло бы сформироваться, если бы не было гена a – от матери, и гена d – от отца. Следовательно, отец и мать гетерозиготны.

Теперь мы можем точно сказать, что вероятность рождения в этой семье нормального кареглазого ребенка составляет ¼ или 25%, его генотип – Ddaa.

Аутосомно-доминантный тип наследования

Я не забыл о том, что по ходу изучения генетики вас надо научить видеть различные варианты наследования на генеалогическом древе (родословной) =) Из предыдущей статьи мы узнали о том, как выглядит и чем характеризуется аутосомно-рецессивный тип наследования, сейчас поговорим об аутосомно-доминантном, с которым мы столкнулись в задачах выше.

Аутосомно-доминантный тип наследования можно узнать по следующим признакам:

  • Болезнь проявляется в каждом поколении семьи (передача по вертикали)
  • Здоровые дети больных родителей имеют здоровых детей
  • Мальчики и девочки болеют одинаково часто
  • Соотношение больных и здоровых 1:1

Источник: https://studarium.ru/article/126

5.5.3. Основные законы генетики

ОСНОВНЫЕ ЗАКОНЫ ГЕНЕТИКИ

Первыйзакон Менделя(законединообразия):при скрещивании гомозиготных особей,все гибриды первого поколенияедино­образны. Например, при скрещиваниирастений с желтыми семенами ААи растений с зелеными семенами аа,гибриды первого поколения оказываютсявсе с желтыми семенами Аа.

Второйзакон Менделя(законрасщепления):при моногибридном скрещиваниигетерозиготных особей во втором поколениинаблюдается расщепление по фенотипу3:1 и по генотипу 1:2:1.

Третийзакон Менделя(законнезависимого наследования):гены разных аллельных пар и соответствующиеим признаки наследуются независимо.

Взаимодействиеаллельных генов осуществляется в трехформах: полноедоминирование, неполное доминированиеи независимое проявление(кодоминирование – пример формированиегрупп крови человека).

Взаимодействиенеаллельных генов подразделяют наосновные формы: комплементарность,эпистаз, полимерию.

ЗаконМоргана(законсцепленного наследования):гены, локализованные в одной хромосоменаследуются сцеплено. Признаки, геныкоторых находятся в половых хромосомах,наследуются сцеплено с полом (гемофилия– несвертываемость крови, дальтонизм– неспособность различать красный изеленый цвета и др.).

Анализповедения генов свободно скрещива­ющейсяпопуляции характеризует законХарди-Вайнберга:любая популяция, в которой распределеныпары генов Аи а,соответствует соотношению р2+ 2pq + q2,находитсяв генетическом равновесии (р2–число гомозиготных особей по доминантномугену с гонотипом АА;q2–число гомозиготных особей по рецессивномугену с гонотипом аа;pq–число гетерозиготных особей). Доли этихгенов в последующих поколениях будутоставаться постоянными, если их неизменит отбор, мутационный процесс иликакая-либо случайность.

5.5.4. Наследственная и ненаследственная изменчивость

Различиямежду видами и различия между особямивнутри вида наблюдаются благодарявсеобщему свойству живого – изменчивости. Выделяют ненаследственнуюи наследственнуюизменчивость.

Наследственная(генотипическая) изменчивостьсвязана с изменениями генетипа и передачеэтих изменений из поколения в поколение.В зависимости от варьирования генетическогоматериала различают две формынаследственной изменчивости: комбинативнуюи мутационную.

Комбинативнаяизменчивостьсвязана с образованием у потомковсочетаний генов без изменения ихмолекулярной структуры, формирующихсяпри перекомбинации генов и хромосом впроцессе полового развития (кроссинговер,независимое расхождение хромосом,случайное сочетание гамет приоплодотворении).

Мутационнаяизменчивостьсвязана с приобретением новых признаковв результате мутаций. Мутацииизменениянаследственных свойств организма врезультате перестроек и нарушений вгенетическом материале организма(хромосомах и генах). Мутация – основанаследственной изменчивости в живойприроде.

Мутации индивидуальны, возникаютвнезапно, скачкообразно, ненаправленно,наследуются. По характеру изменениягенотипа различают геномные (полиплоидия,анэуплоидия), хромосомные и генныемутации.

Причинамихромосомных мутаций могут являться:потеря хромосомой фрагмента после ееразрыва в двух местах; поворот участкана 180° после разрыва хромосомы (инверсия);обмен двух хромосом своими кусками(транслокация); удвоение участка вхромосоме (дупликация).

Причиныгенных мутаций: замена одного основаниядругим (например, А на Г); выпадениеодного основания (делеция); включениеодного дополнительного основания(дупликация); поворот ДНК на 180° (инверсия).

Следствиемгенетических и хромосомных мутацийявляются, например, болезнь Дауна(трисомия по 21-й хромосоме), синдромТернера (45 Х0), альбионизм, облысение идр.

Ненаследственная(фенотипическая, модификационная)изменчивостьсвязана с изменениями фенотипа подвлиянием внешней среды на экспрессиюгенов. Генотип остается неизменным.

Границы изменчивости признака, возникающейпод действием факторов среды, определяетсяее нормойреакции.

Главные особенности модификационных изменений: кратковременность (непередаются следующему поколению),групповой характер изменений, охватывающийбольшинство особей в популяции, имеютприспособительный характер.

Источник: https://studfile.net/preview/5350695/page:54/

Основные законы генетики

ОСНОВНЫЕ ЗАКОНЫ ГЕНЕТИКИ

Первый закон Менделя (закон единообразия): при скрещивании гомозиготных особей, все гибриды первого поколения едино­образны. Например, при скрещивании растений с желтыми семенами АА и растений с зелеными семенами аа, гибриды первого поколения оказываются все с желтыми семенами Аа.

Второй закон Менделя (закон расщепления): при моногибридном скрещивании гетерозиготных особей во втором поколении наблюдается расщепление по фенотипу 3:1 и по генотипу 1:2:1.

Третий закон Менделя (закон независимого наследования): гены разных аллельных пар и соответствующие им признаки наследуются независимо.

Взаимодействие аллельных генов осуществляется в трех формах: полное доминирование, неполное доминирование и независимое проявление (кодоминирование – пример формирование групп крови человека).

Взаимодействие неаллельных генов подразделяют на основные формы: комплементарность, эпистаз, полимерию.

Закон Моргана (закон сцепленного наследования): гены, локализованные в одной хромосоме наследуются сцеплено. Признаки, гены которых находятся в половых хромосомах, наследуются сцеплено с полом (гемофилия – несвертываемость крови, дальтонизм – неспособность различать красный и зеленый цвета и др.).

Анализ поведения генов свободно скрещивающейся популяции характеризует закон Харди-Вайнберга: любая популяция, в которой распределены пары генов А и а, соответствует соотношению р2 + 2pq + q2, находится в генетическом равновесии (р2 – число гомозиготных особей по доминантному гену с гонотипом АА; q2 – число гомозиготных особей по рецессивному гену с гонотипом аа; pq – число гетерозиготных особей). Доли этих генов в последующих поколениях будут оставаться постоянными, если их не изменит отбор, мутационный процесс или какая-либо случайность.

Наследственная и ненаследственная изменчивость.Различия между видами и различия между особями внутри вида наблюдаются благодаря всеобщему свойству живого – изменчивости. Выделяют ненаследственную и наследственную изменчивость.

Наследственная (генотипическая) изменчивость связана с изменениями генетипа и передаче этих изменений из поколения в поколение. В зависимости от варьирования генетического материала различают две формы наследственной изменчивости: комбинативную и мутационную.

Комбинативная изменчивость связана с образованием у потомков сочетаний генов без изменения их молекулярной структуры, формирующихся при перекомбинации генов и хромосом в процессе полового развития (кроссинговер, независимое расхождение хромосом, случайное сочетание гамет при оплодотворении).

Мутационная изменчивость связана с приобретением новых признаков в результате мутаций. Мутацииизменения наследственных свойств организма в результате перестроек и нарушений в генетическом материале организма (хромосомах и генах). Мутация – основа наследственной изменчивости в живой природе.

Мутации индивидуальны, возникают внезапно, скачкообразно, ненаправленно, наследуются. По характеру изменения генотипа различают геномные (полиплоидия, анэуплоидия), хромосомные и генные мутации.

Причинами хромосомных мутаций могут являться: потеря хромосомой фрагмента после ее разрыва в двух местах; поворот участка на 180° после разрыва хромосомы (инверсия); обмен двух хромосом своими кусками (транслокация); удвоение участка в хромосоме (дупликация).

Причины генных мутаций: замена одного основания другим (например, А на Г); выпадение одного основания (делеция); включение одного дополнительного основания (дупликация); поворот ДНК на 180° (инверсия).

Следствием генетических и хромосомных мутаций являются, например, болезнь Дауна (трисомия по 21-й хромосоме), синдром Тернера (45 Х0), альбионизм, облысение и др.

Ненаследственная (фенотипическая, модификационная) изменчивость связана с изменениями фенотипа под влиянием внешней среды на экспрессию генов. Генотип остается неизменным.

Границы изменчивости признака, возникающей под действием факторов среды, определяется ее нормой реакции.

Главные особенности модификационных изменений: кратковременность (не передаются следующему поколению), групповой характер изменений, охватывающий большинство особей в популяции, имеют приспособительный характер.

Генная инженерия и клонирование.Генетическая (генная) инженерия – совокупность методов конструирования лабораторным путем (in vitro) генетических структур и наследственно измененных организмов, т.е. создание новых, не существующих в природе сочетаний генов.

Возникла в нач. 70-х гг. 20 в. Генетическая инженерия основана на извлечении из клеток какого-либо организма гена (кодирующего нужный продукт) или группы генов и соединении их со специальными молекулами ДНК (т. н. векторами), способными проникать в клетки другого организма (главным образом микроорганизмов) и размножаться в них, т.е. создание молекул рекомбинантных ДНК.

Рекомбинантные (чужеродные) ДНК привносят в реципиентный организм новые генетические и физико-биохимические свойства. К числу таких свойств можно отнести синтез аминокислот и белков, гормонов, ферментов, витаминов и др.

Применение методов генетической инженерии открывает перспективу изменения ряда свойств организма: повышение продуктивности, резистентности к заболеваниям, увеличение скорости роста, улучшения качества продукции и др.

Животных, несущих в своем геноме рекомбинантный (чужеродный) ген, принято называть трансгенными, а ген, интегрированный в геном реципиента, – трансгеном.

Благодаря переносу генов у трансгенных животных возникают новые качества, а дальнейшая селекция позволяет закрепить их в потомстве и создать трансгенные линии.

Методы генетической инженерии позволяют создавать новые генотипы растений быстрее, чем классические методы селекции и появляется возможность целенаправленного изменения генотипа – трансформации.

Генетическая трансформация заключается главным образом в переносе чужеродных или модифицированных генов в эукариотические клетки. В клетках растений возможна экспрессия генов, перенесенных не только от других растений, но и от микроорганизмов и даже животных.

Клонированиеэто воспроизведение живого существа его неполовых (соматических) клеток. Клонирование органов и ней – важнейшая задача в области трансплантологии, травматологии и других областях медицины и биологии.

При пересадке клонированных органов не возникают реакции отторжения и отсутствуют возможные неблагоприятные последствия (например, рак, развивающийся на фоне иммунодефицита). Клонированные органы – это спасение для людей, попавших в автомобильные аварии или иные катастрофы, а также нуждающихся в радикальной помощи вследствие каких-либо заболеваний.

Клонирование может дать бездетным людям возможно, иметь своих собственных детей, помочь людям, страдающим тяжелыми генетическими заболеваниями.

Так, если гены, определяющие какое-либо наследственное заболевание, содержатся в хромосомах то в яйцеклетку матери пересаживается ядро ее собственной соматической клетки, тогда появится ребенок, лишенный опасных генов, копия матери.

Если эти гены содержатся в хромосомах матери, в ее яйцеклетку будет перемещено ядро соматической клетки отца и появится здоровый ребенок, копия отца. Дальнейший прогресс человечества во многом связан с развитием биотехнологии. Вместе с тем необходимо учитывать, что неконтролируемое распространение генно-инженерных живых организмов и продуктов может нарушить биологический баланс в природе и представлять угрозу здоровью человека.

Не нашли то, что искали? Воспользуйтесь поиском:

Источник: https://studopedia.ru/8_16397_osnovnie-zakoni-genetiki.html

Books-med
Добавить комментарий