Необходимость измерения скорости и направления кровотока

Определение скорости кровотока. Оценка скорости кровотока

Необходимость измерения скорости и направления кровотока

В некоторых случаях для дифференциации форм одышки полезно определение скорости кровотока. При сердечной недостаточности скорость понижена, при других формах одышки — в норме.

Как правило, определяются два времени:
1) время «рука — легкие» (эфирное время — показатель деятельности преимущественно правого желудка).

После быстрого введения в вену 0,3 мл эфира для наркоза и 0,3 мл физиологического раствора хлористого натрия появление эфира в легких ясно ощущается по запаху эфира; в норме через 4— 8 секунд;
2) время «рука — язык» (дехолиновое время) определяется, обычно с помощью внутривенной инъекции дехолина (3 мл 20% раствора дехолина), который, пройдя в норме за 9—15 секунд большой круг кровообращения, дает ощущение горького вкуса на языке.

При наличии оксиметра время кровотока можно измерить очень точно и, главное, без субъективных показаний больного.

Время «рука — ухо» (соответствующее времени «рука — язык») определяется введением в вену руки methylenblau (0,3 мл 2% раствора на 10 кг веса тела) и измерением времени от момента введения в вену до появления красящего вещества в ухе [распознается по отклонению оксиметрической кривой (в норме 7 — 12 секунд)].

Время «легкие — ухо» определяется временем от арпое или вдыхания азота до начала появления насыщенной окраски уха (в норме 3—5 секунд). Вычитая из времени «рука — ухо» время «легкие — ухо», можно легко рассчитать время «рука — легкие».

С помощью такого метода удается дифференцировать недостаточность левого желудочка, при которой удлиняется время «легкие — ухо», от недостаточности правого желудочка, при которой удлиняется время «рука — легкие». Выражая общую недостаточность, оба времени, как правило, удлинены.

Теперь, когда стало возможным объективно измерять время кровотока, оно стало приобретать все большее и большее значение для оценки сердечной недостаточности.

Удлинение времени напряжения сердца при сердечной недостаточности — явление частое, но определение его требует одновременного снятия ЭКГ и двух пульсовых кривых и поэтому практического значения до сих пор не приобрело.

Нормальное время напряжения равно 0,07—0,09 секунды, но может достигать и 0,20 секунды (Blumberger).

Определение времени кровотока и напряжения сердца позволяет ставить диагноз сердечной недостаточности только в далеко зашедших случаях, в начальных же стадиях, когда с помощью компенсаторных механизмов (повышение венозного, resp.

желудочкового, давления) можно еще побудить недостаточно работающую сердечную мышцу к повышенной деятельности, эти методы в качестве диагностических критериев непригодны.

Часто приходится удивляться, как больные при значительном удлинении (около 1/3 нормы) времени кровотока имеют очень незначительные субъективные ощущения.

Попытки патогенетического объяснения симптомов декомпенсации имеют для диагностики гемодинамической сердечной недостаточности ограниченное значение.

Старая классическая теория о «backward failure», которая, следовательно, рассматривает застойные симптомы только как застой позади теперь не работоспособного сердца, не в состоянии объяснить всех клинических форм декомпенсации.

Поэтому для объяснения повышенного венозного давления особенно подчеркивают значение рефлекторного механизма, вызывающего сужение вен, и общего увеличения количества плазмы крови (Wollheim). Этот последний фактор можно считать результатом «forward failure», т. е.

недостаточности впереди сердца (по току крови) в смысле снижения минутного выброса крови. При «forward failure» кровенаполнение почек, а следовательно, и выделение соли понижено, что ведет к общей задержке в организме жидкости.

Самое определение минутного объема сердца — дело клиники.

За исключением приведенной в нашей статье группы заболеваний с большим минутным объемом сердца (с первичным нарушением на периферии), минутный объем сердца при первичном нарушении в самом сердце снижен (low output failure-недостаточность со сниженным количеством выбрасываемой крови). Возможно, что этого снижения в легких случаях и в покое не удается выявить и заметным оно становится только во время нагрузки в случае недостаточной способности сердца повысить минутный объем.

Играет роль также продукция альдостерона, механизм регулирующего влияния которого еще недостаточно выяснен, так как альдостерон (фактор, задерживающий натрий) препятствует выделению натрия почками и тем самым способствует задержке жидкости.

Проба с инъекцией строфантина во многих случаях позволяет «демаскировать» начинающуюся сердечную недостаточность. Если спустя несколько часов после введения 0,25 мг строфантина субъективные симптомы исчезают или объективно наблюдается уменьшение всех симптомов застоя в легких, resp. избыточное выделение мочи, то сердечная недостаточность становится очень вероятной.

– Вернуться в оглавление раздела “Профилактика заболеваний”

Оглавление темы “Причины одышки. Сердечная недостаточность.”:
1. Одышка. Причины одышки.
2. Одышка при заболеваниях легких. Одышка при поражении легких.
3. Предел дыхания. Проба Тиффно. Виды легочной недостаточности.
4. Дыхательная недостаточность при бронхиальной астме. Одышка при эмфиземе.
5. Одышка при бронхите. Диагностика бронхита.
6. Бронхит от раздражения. Бактериальный бронхит. Бронхит при эмфиземе легких.
7. Одышка при заболеваниях сердца. Болезни сердца и одышка при них.
8. Симптомы заболевания сердца. Ритм галопа. Диагностика ритма галопа.
9. Симптомы сердечной недостаточности. Гемодинамическая сердечная недостаточность.
10. Определение скорости кровотока. Оценка скорости кровотока.

Источник: https://meduniver.com/Medical/profilaktika/270.html

Физические принципы допплеровского исследования кровотока

Необходимость измерения скорости и направления кровотока

Эффект Допплера, на котором основано ультразвуковое исследование кровотока, состоит в том, что частота звука, издаваемого движущимся объектом, изменяется при восприятии этого звука неподвижным объектом.

Этот эффект иллюстрирован рис. 1. В 1961 году Franklin с соавт. впервые сообщили о применении допплеровского эффекта для изучения кровотока. Клиническое использование допплеровских исследований в кардиологии началось с 80-х годов.

Рисунок 1. Эффект Допплера.

Эффект доплера состоит в том, что частота звука, издаваемого движущимся объектом, изменяется при восприятии этого звука неподвижным объектом. Применительно к ультразвуковому исследованию кровотока это можно перефразировать так: ультразвук, отраженный от движущихся объектов, возвращается к датчику с измененной частотой.

На рисунке представлены пары датчиков (Т — датчик, посылающий сигналы, R — датчик, воспринимающий сигналы). А: При отражении сигнала от неподвижного объекта, частота посланного сигнала ft равна частоте отраженного сигнала fr .

В: Если объект (при исследовании кровотока — эритроцит) движется в сторону датчика, то частота посланного сигнала меньше частоты отраженного сигнала. С: Если объект движется в противоположную сторону, то частота посланного сигнала больше частоты отраженного сигнала.

Независимо от того, удаляется ли объект от датчика или приближается к нему, сдвиг частоты ультразвукового сигнала fd пропорционален скорости движения объекта. 

Применительно к кардиологии, допплеровский эффект состоит в том, что при отражении ультразвукового сигнала от движущихся объектов (эритроцитов, а также створок клапанов, стенок сердца) меняется его частота, — происходит сдвиг частоты ультразвукового сигнала .

Этот сдвиг представляет собой разность между между частотой сигнала датчика и частотой отраженного от эритроцитов сигнала. Чем больше скорость движения эритроцитов, тем больше сдвиг частоты ультразвукового сигнала.

Если движение эритроцитов направлено в сторону датчика, то частота отражаемого от них сигнала увеличивается; если эритроциты движутся от датчика, то частота отражаемого от них сигнала уменьшается.

Таким образом, измерение абсолютной величины сдвига ультразвукового сигнала позволяет определить скорость и направление кровотока.

Сдвиг частоты ультразвукового сигнала зависит от частоты посылаемого сигнала: чем она меньше, тем большие скорости кровотока могут быть измерены. Поэтому для допплеровского исследования следует выбирать датчик, имеющий наименьшую частоту (обычно 2,0—2,5 МГц).

Угол между направлением ультразвукового луча и направлением кровотока не должен превышать 20° (cos 20° приблизительно равен 0,94), тогда ошибка измерения скорости кровотока не будет существенной. Это диктует необходимость направлять ультразвуковой луч при допплеровском исследовании параллельно направлению изучаемого кровотока (рис. 2). 

Рисунок 2. Влияние величины угла θ между направлением ультразвукового луча и направлением кровотока на сдвиг частоты ультразвукового сигнала.

Если ультразвуковой луч направлен параллельно кровотоку, то cos θ = 1 и скорость кровотока может быть измерена правильно. При увеличении угла θ более 20° ошибка измерений становится ощутимой. Если ультразвуковой луч направлен перпендикулярно кровотоку, скорость кровотока вообще не может быть измерена (cos 90° = 0).

Ультразвуковой сигнал, отраженный от эритроцитов, принимается датчиком и обрабатывается компьютерными программами эхокардиографа с помощью преобразования Фурье. 

Допплеровский спектр во всех современных эхокардиографах представляет собой развертку скорости по времени. Кровоток, направленный от датчика, изображается ниже изолинии; кровоток, направленный к датчику, — выше нее.

Во всех эхокардиографических системах предусмотрена возможность смещения изолинии и изменения масштаба спектра (с помощью изменения частоты повторения импульсов, речь о которой пойдет ниже).

Для устранения низкочастотных колебаний, связанных с движением стенок сердца и сердечных клапанов, используются различные фильтры.

Кроме того, все эхокардиографы имеют звуковой выход, так что сдвиг частоты ультразвукового сигнала преобразуется не только в графическое изображение скорости кровотока, но и в слышимый звук. Звуковой сигнал позволяет точнее направить ультразвуковой луч, выбрать правильные фильтры. Не следует смешивать слышимый звук при допплеровском исследовании с аускультативными данными, это — явления разного происхождения.

Рис. 3. Обычно используемое отображение меняющегося во времени спектра допплеровского сдвига в виде вертикальных полос с модуляцией яркости.

Частота излучаемого сигнала
Из выражения для допплеровского сдвига частоты (8) видно, что при неизменной скорости кровотока Допплеровский сдвиг пропорционален частоте излучаемого датчиком сигнала: чем больше эта частота, тем больше сдвиг. По этой причине целесообразно выбирать как можно большую величину частоты сигнала, так как при этом увеличивается точность измерения допплеровского сдвига Рд и, следовательно, точность оценки скорости v в каждый момент времени.

Стремление увеличить частоту излучения, к сожалению, в существенной мере сдерживается физическими ограничениями, связанными с затуханием ультразвуковых колебаний в биологических тканях.

Как известно, эти затухания имеют частотнозависимый характер, т.е.

с увеличением частоты повышается степень затухания и, следовательно, уменьшается максимальная глубина, на которой еще можно получить эхо-сигнал приемлемого уровня, достаточного для измерения допплеровского сдвига частоты.

Уровень эхо-сигналов, отраженных форменными элементами крови, прежде всего эритроцитами, в среднем ниже, чем уровень эхо-сигналов, отраженных неоднородностями мягких тканей, что обусловлено очень малым размером эритроцитов. Поэтому для получения необходимого уровня эхо-сигналов в заданном диапазоне глубин в допплеровских режимах применяются несколько более низкие частоты, чем в В-режиме.

В чисто допплеровских режимах (без одновременного получения В-изображения) используются, как правило, датчики со следующими частотами: 2 МГц — для исследования сосудов мозга (транскраниального исследования); 3 МГц — для исследования плацентарного кровотока; 4 или 5 МГц — для исследования относительно крупных и глубоко расположенных сосудов;

8 или 10 МГц — для исследования мелких, неглубоко расположенных периферических сосудов.

В так называемых дуплексных датчиках, используемых для получения одновременно двухмерного В-изображения и допплеровских измерений, частота для допплеровских измерений ниже, чем частота для В-режима. Например, датчик с частотой 3,5 МГц в В-режиме в допплеровском режиме излучает частоту 3 МГц, в датчике с частотой 5 МГц (в В-режиме) в допплеровском режиме применяется частота 4 МГц.

Понятие о спектре скоростей кровотока

Ранее мы предполагали, что наблюдаются отражатели, у которых скорость движения в данный момент времени одна и та же. На самом деле различные движущиеся отражатели имеют, как правило, различную скорость.

Рассмотрим в качестве примера сечение сосуда (рис. 4). Скорость кровотока в центре сосуда максимальна и снижается по мере приближения к краям вследствие трения о стенки сосуда.

В нормальном сосуде небольшого диаметра огибающая скоростей (кривая на рис. 4) имеет форму, близкую к параболе.

Рис. 4. Параболическое распределение скоростей кровотока в сечении сосуда.

Распределение скоростей на рис. 4 соответствует определенному моменту времени, в зависимости от времени величины скоростей будут меняться, хотя характер изменения скорости в сечении сосуда будет примерно тем же. В систолической фазе скорости в артериях существенно выше, чем в диастолической фазе.

Можно изобразить на графике (рис. 5) распределение скоростей в определенный момент времени, откладывая по горизонтальной оси значение скоростей, а по вертикальной оси — уровни эхо-сигналов, соответствующие каждому значению скорости.

Чем большее количество элементов крови движется с определенной скоростью, тем больше уровень суммарного эхо-сигнала для этого значения скорости. Приведенное распределение амплитуд эхо-сигналов для различных скоростей называется спектром скоростей.

Естественно, вид спектра скоростей меняется в различных фазах сердечного цикла — в систолической фазе он смещен в сторону более высоких значений скоростей (рис. 5а), в диастолической фазе спектр скоростей смещается к более низким значениям скоростей (рис. 5б).

Рис. 5. Спектр скоростей в сечении сосуда,

а — в систолической фазе, б — в диастолической фазе.

Следует сказать о том, что спектр скоростей кровотока отображается на экране ультразвукового прибора не в виде амплитудного распределения, как на рис. 5, а в виде вертикальной линии, яркость каждой точки которой пропорциональна амплитуде сигнала на соответствующей скорости. Об этом будет сказано ниже более подробно.

Скорости кровотока, а точнее проекции скоростей на ось ультразвукового луча, формируемого датчиком, однозначно связаны с частотами допплеровского сдвига Рд согласно вышеприведенным формулам.

Поэтому спектру скоростей кровотока соответствует спектр частот допплеровского сдвига. На рис. 6 изображен вид такого спектра частот для систолической и диастолической фаз.

Подробнее о спектре частот допплеровского сдвига будет сказано в следующих разделах.

Рис. 6. Спектр частот допплеровского сдвига для эхо-сигналов,

а — в систолической фазе, б — в диастолической фазе.

Форма спектра скоростей в существенной мере зависит от характера кровотока в сосуде. На рисунке изображен вид спектра скоростей для нормального сосуда относительно небольшого диаметра с параболическим профилем скоростей в сечении.

В сосуде большого диаметра, например в аорте, профиль скоростей отличается от параболического — в средней части сосуда большое количество эритроцитов движется с одинаковой скоростью.

В этом случае спектр скоростей более узкий, чем в предыдущем случае.

Рис. 7. Спектр скоростей в сосудах, а — уменьшение ширины спектра в широком сосуде, б — увеличение максимальной скорости и расширение спектра в зоне стеноза,

в — значительное расширение спектра и появление составляющих с обратной скоростью в зоне сильного стеноза.

Наличие стеноза в сосуде  приводит к увеличению максимальной скорости в центре сосуда (в систолической фазе). Кроме того, вследствие увеличения трения на границах сосуда в зоне стеноза увеличивается количество элементов крови, скорость которых замедляется. По этим причинам спектр скоростей в зоне стеноза более широкий, чем в нормальном сосуде.

В зоне сильного стеноза  максимальная скорость кровотока в систолической фазе еще больше увеличивается по сравнению с сосудом в норме. Количество составляющих с малыми скоростями также увеличивается, что приводит к дальнейшему расширению спектра.

Кроме того, в области непосредственно после сужения сосуда, когда сосуд опять начинает расширяться, возникают завихрения кровотока, т.е. нарушение равномерности (ламинарности) кровотока: кровоток из ламинарного становится турбулентным.

В спектре скоростей при этом могут появляться составляющие с противоположной (в данном случае отрицательной) скоростью.

Приведенные примеры показывают, что возможность получения информации о форме спектра скоростей кровотока в различных сечениях сосуда является исключительно полезной для диагностики сосудистых заболеваний. Очевидно, более полную информацию о состоянии сосудов может дать анализ изменения спектра скоростей во времени в различных фазах сердечного цикла.

На спектр скоростей кровотока влияют не только аномалии сосуда, но и геометрия сосуда и физические особенности процесса получения информации о кровотоке. Так, в зоне бифуркации обязательно имеет место расширение спектра скоростей и возможно появление составляющих с обратной скоростью вследствие нарушения ламинарного течения крови в месте разветвления сосуда.

В зоне изгиба сосуда наблюдаемый спектр скоростей расширяется, что в основном обусловлено изменением направления скоростей в месте изгиба и, следовательно, наличием составляющих скорости, направленных относительно оси датчика под разными углами.

Рис. 8. Изменение величины проекции скорости в пределах ширины УЗ-луча.

На процесс получения данных о скоростях кровотока в области малых скоростей оказывает заметное влияние пульсация стенок сердца и стенок сосудов, возникающая в процессе смены систолической и диастолической фаз сердечного цикла.

Движения стенок сосудов в процессе их периодического расширения и сужения дают дополнительные составляющие в спектр скоростей кровотока, и приходится принимать специальные меры для исключения этих составляющих, например выполнить фильтрацию соответствующих им частот допплеровского сдвига.

http://euromedcompany.ru/ultrazvuk/dopplerovskie-metody-osnovy
http://serdce.com.ua/?p=286

Источник: http://ilab.xmedtest.net/?q=node/3901

Прибор для измерения скорости кровотока (стр. 1 из 14)

Необходимость измерения скорости и направления кровотока

Введение

1. Теоретическая часть

1.1 Необходимость измерения скорости и направления кровотока

1.2 Сущность эффекта Доплера

1.3 Доплеровские методы и аппараты, основанные на них

1.3.1 Основные этапы развития доплеровских методов

1.3.2 Основные принципы построения доплеровской аппаратуры

1.3.3 Электроакустические принципы построения доплеровских приборов

1.4 Ограничения доплеровского метода

1.5 Доплеровские системы с двухмерной визуализацией

1.5.1 Дуплексные системы

1.5.2 Системы с цветовым картированием потоков

1.6 Сравнительный анализ основных режимов получения доплеровской информации

1.7 Виды ультразвуковых датчиков для проведения доплерографии

1.7.1 Классификация датчиков по конструктивным параметрам

1.7.2 Классификация датчиков по характеру излучаемого ультразвука

2. Выбор функциональной схемы прибора

3. Разработка электрической принципиальной схемы прибора

3.1 Описание работы прибора на основании электрической принципиальной схемы

3.2 Расчет основных параметов схемы

3.3 Расчет надежности электрической схемы

4. Разработка конструкции ультразвукового датчика прибора для измерения кровотока

4.1 Требования к конструкции ультразвукового датчика

4.2 Выбор материала для пьезоэлектрического преобразователя

4.3 Расчет основных параметров пьезоэлектрического преобразователя

4.3.1 Исходные данные для расчетов

4.3.2 Расчет геометрических параметров преобразователя

4.3.3 Расчет энергетических характеристик преобразователя

4.4 Описание конструкции ультразвукового датчика

4.5 Технология изготовления пьезоэлектрического преобразователя

4.5.1 Пайка пьезокерамического элемента

4.5.2 Склеивание пьезокерамического элемента

4.6 Технология сборки ультразвукового датчика

5. Экономическая часть

5.1 Обоснование целесообразности разработки новой техники

5.2 Определение показателей экономического обоснования проектируемого прибора

5.3 Себестоимость проектируемого прибора

5.4 Отпускная цена и экономическая эффективность проектируемого прибора

6. Безопасность и экологичность проекта

6.1 Безопасность при работе с приборами, использующими ультразвук

6.2 Системный анализ надежности и безопасности ультразвукового прибора

6.3 Разработка мероприятий по повышению надежности и безопасности прибора для ультразвуковых исследований

6.4 Пожаробезопасность при производстве и эксплуатации ультразвукового прибора

6.5 Защита окружающей природной среды на этапе производства и эксплуатации ультразвукового прибора

Заключение

Список литературы

Введение

В настоящее время существует ряд методов исследования микроциркуляторного русла. Среди них выделяют микроскопические техники, в частности офтальмоскопия, компьютерная ТV-микроскопия сосудов конъюнктивы глазного яблока, ногтевого ложа, сосудов кожи.

Они позволяют оценить структуру и диаметр микрососудов, состояние их тонуса, выявить различные внутри и вне сосудистые изменения (замедление кровотока, стаз, липидные включения и т.д.). Ряд методов позволяет определить линейную скорость кровотока. Однако данные методы исследования не позволяют оценить тканевой кровоток в целом, выявить особенности его регуляции.

Существуют методы оценки тканевого кровотока, в том числе окклюзионная плетизмография, вымывание радиоактивных изотопов, флюорисцентная микроангиография, введение меченых микросфер и т.д. Однако некоторые из них нашли применение лишь в экспериментальной медицине из-за сложности применения у человека, другие связаны с необходимостью использования дорогостоящей техники.

Кроме того, вышеперечисленные методы исследования микрокровотока позволяют лишь косвенно оценить особенности регуляции периферической гемодинамики.

Использование приборов на основе доплеровского эффекта является наиболее распространенным и удобным неинвазивным методом исследования кровотока, который позволяет выявить особенности регуляции кровотока.

В данной дипломной работе необходимо разработать прибор для измерения кровотока на основе доплеровского эффекта, в котором применяется ультразвуковые волны.

Цель дипломной работы – разработать прибор для измерения кровотока, основанный на эффекте Доплера.

Исходя из цели основными задачами дипломной работы являются:

рассмотрение сущности доплеровского эффекта;

рассмотрение этапов развития доплеровских методов, а также основных принципов построения доплеровской аппаратуры;

рассмотрение электроакустических принципов построения доплеровских приборов;

литературный обзор возможных типов преобразователей для приборов измерения кровотока;

выбор функциональной схемы прибора;

разработка электрической принципиальной схемы прибора;

разработка конструкции измерительного преобразователя;

технико-экономическое обоснование разработки;

выявление отрицательных факторов при работе приборами, основанными на эффекте Доплера.

При написании дипломной работы использовался большой объем источников информации: учебники, справочная литература, нормативные документы, периодические и монографические издания специалистов.

Актуальность, цель и задачи, информационная база предопределили структуру дипломной работы. Она состоит из шести глав. Первая глава посвящена теоретическим аспектам доплерографии. Вторая глава включает выбор функциональной схемы прибора.

Третья глава носит проектный характер и посвящена разработке схемы электрической принципиальной для прибора, а также расчету основных параметров схемы. В четвертой главе разрабатывается конструкция измерительного преобразователя. Пятая глава посвящена экономической стороне разработки – технико-экономическое обоснование разработки.

В шестой главе рассматриваются вопросы безопасности жизнедеятельности и экологичности разработки.

1.1 Необходимость измерения скорости и направления кровотока

Сердечно-сосудистая система состоит из сердца и сосудов – артерий, капилляров и вен. Транспортная функция сердечно-сосудистой системы заключается в том, что сердце (насос) обеспечивает передвижение крови (транспортируемой среды) по замкнутой цепи сосудов (эластических трубок).

В физиологических условиях почти во всех отделах кровеносной системы наблюдается ламинарное, или слоистое течение крови.

При таком типе течения жидкость движется вдоль сосуда, причем, все ее частицы перемещаются только параллельно оси сосуда.

Линейная скорость кровотока ламинарного типа связана с длиной сосуда, градиентом давления, вязкостью крови, но, главным образом, зависит от диаметра сосуда.

При сокращении сердца кровь поступает из левого желудочка в выходящий тракт (аорту) только во время периода изгнания. В ходе пульсовых колебаний скорость кровотока меняется следующим образом: после открытия аортальных клапанов она резко возрастает, затем к концу периода изгнания падает почти до нуля.

От начала периода расслабления и до закрытия сворок аортального клапана наблюдается кратковременный обратный ток крови в левый желудочек.

Различают объемную и линейную скорости кровотока.

Объемной скоростью Q называют величину, численно равную объему жидкости, протекающему в единицу времени через данное сечение трубы:

(1)

Линейная скорость – представляет путь, пройденный частицами крови в единицу времени:

(2)

Поскольку линейная скорость неодинакова, но сечению трубы, то в дальнейшем речь будет идти только о линейной скорости, средней по сечению.

В покое максимальная скорость кровотока в аорте превышает 100 см/сек, средняя скорость в течение всего периода изгнания около 70 см/сек.

Поскольку средняя скорость кровотока обратно пропорциональна поперечному сечению сосудов, она значительно ниже в периферических артериях, и особенно в концевых артериях и артериолах (2 – 10 см/сек).

Медленнее всего кровь течет в капиллярах – линейная скорость кровотока в них составляет 0,03 см/сек.

Измерение скорости кровотока в магистральных артериях и венах имеет большое диагностическое значение, поскольку косвенно свидетельствует о патологическом изменении геометрии сосуда и упругих свойствах стенки сосудов. В связи с этим, в клинической практике широко применяются методы для регистрации кровотока в крупных сосудах, а также структурах сердца.

Возможность неинвазивной, объективной и динамической оценки кровотока по сосудам малого калибра остается одной из актуальных задач современной ангиологии и смежных специальностей.

От ее решения зависит успех ранней диагностики таких заболеваний, как облитерирующий эндартериит, диабетическая микроангеопатия, синдром и болезнь Рейно.

Не менее важным аспектом проблемы эхолокации низкоскоростных потоков крови является мониторинг проходимости микрососудистых анастомозов при реимплантации сегментов конечностей, трансплантации тканевых лоскутов и органов.

Нарушения мозгового кровообращения являются одной из основных причин смертности населения развитых стран. Ишемическая болезнь мозга по распространенности практически соответствует ишемической болезни сердца и составляет около 36% в структуре сердечно-сосудистых заболеваний.

Особое место среди причин, приводящих к нарушениям мозгового кровообращения, занимает патологическая извитость сонных артерий. С одной стороны, это связано с ее высокой распространенностью в качестве причины недостаточности мозгового кровообращения, уступающей только распространенности атеросклеротического поражения каротидных артерий.

С другой стороны, до сих пор нет единого мнения о гемодинамической значимости деформации сонных артерий и целесообразности ее хирургической коррекции.

Источник: https://mirznanii.com/a/151705/pribor-dlya-izmereniya-skorosti-krovotoka

Сп минимакс

Необходимость измерения скорости и направления кровотока

Скорость кровотока — это скорость передвижения элементов крови по кровеносному руслу за определенную единицу времени. В практике специалисты выделяют линейную скорость и объемную скорость кровотока.

Один из главных параметров, характеризующий функциональность кровеносной системы организма. Этот показатель зависит от частоты сокращений сердечной мышцы, количества и качественного состава крови, величины сосудов, артериального давления, возраста и генетических особенностей организма.

Типы скорости кровотока

Линейная скорость- расстояние, проходимое частицей крови по сосуду за определенный период времени. Оно напрямую зависит от суммы площадей поперечного сечения сосудов, составляющих данный участок сосудистого русла.

Следовательно, аорта- самый узкий участок кровеносной системы и в ней самая высокая скорость кровотока, достигающая 0,6 м/с. Самым «широким» местом являются капилляры, т. к. их общая площадь в 500 раз больше площади аорты, скорость кровотока в них 0,5 мм/с. , что обеспечивает прекрасный обмен веществ между капиллярной стенкой и тканями.

Объемная скорость кровотока — общее количество крови поступающей через поперечное сечение сосуда за определенный промежуток времени.

Данный вид скорости определяется:

  • разностью давления на противоположных концах сосуда ,которая формируется артериальным и венозным давлением;
  • сопротивлением сосудов току крови, зависящим от диаметра сосуда, его длины, вязкости крови.

Важность и острота проблемы

Определение такого важного параметра , как скорость кровотока крайне важно для исследования гемодинамики конкретного участка сосудистого русла либо определенного органа. При изменении его можно говорить о наличие патологических сужении на протяжении сосуда, препятствий току крови (пристеночные тромбы, атеросклеротические бляшки),повышенной вязкости крови.

В настоящее время неинвазивная, объективная оценка кровотока по сосудам разного калибра является самой актуальной задачей современной ангиологии. От успеха в ее решении зависит успех ранней диагностики таких сосудистых заболеваний, как диабетическая микроангиопатия, синдром Рейно, различных окклюзий и стенозов сосудов.

Перспективный помощник

Самым перспективным и безопасным является определение скорости кровотока УЗ-методом, построенным на эффекте Доплера.

Одним из последних представителей УЗ доплеровских аппаратов является Допплер- аппарат, выпускаемый компанией Минимакс ,зарекомендовавший себя на рынке как надежный, качественный и долгосрочный помощник в определении сосудистой патологии.

Как происходит измерение скорости кровотока в сосудах?

Измерение скорости кровотока в сосудах производится с применением различных методик.

Одной из самых точных и достоверных результатов даёт измерение, произведённое с помощью метода ультразвуковой доплеровской флоуметрии аппаратом Минимакс-Допплер.

Данные, полученные при использовании оборудования Минимакс, являются основой для оценки состояния обследуемого и учитывается при определении диагноза.

Для чего проводят измерение скорости движения крови?

Измерение скорости кровотока имеет важно для диагностической медицины. Благодаря анализу данных, полученных в результате измерений можно определить:

  • состояние сосудов, показатель вязкости крови;
  • уровень снабжения кровью мозга и других органов;
  • сопротивление движению в обоих кругах кровообращения;
  • уровень микроциркуляции;
  • состояние коронарных сосудов;
  • степень сердечной недостаточности.

Скорость кровотока в сосудах, артериях и капиллярах не является постоянной и одинаковой величиной: самая большая скорость — в аорте, самая маленькая — внутри микрокапилляров.

Для чего проводят измерение скорости кровотока в сосудах ногтевого ложа?

Скорость кровотока в сосудах ногтевого ложа — один из наглядных показателей качества микроциркуляции крови в организме человека. Сосуды ногтевого ложа имеют малое поперечное сечение и состоят не только из капилляров, а также из микроскопических артериол.

При проблемах, связанных с кровеносной системой, эти капилляры и артериолы страдают первыми. Конечно, судить о состоянии всей системы только лишь на основании исследования кровообращения в области ногтевого ложа нельзя, но стоит обратить внимание, если движение крови в этой области является слишком низким или высоким.

В медицине для получения наиболее достоверных сведений проводят измерения параметров кровообращения на больших участках кровообращения.

Источник: http://minimax.ru/articles/general-information/blood-flow.html

Скорость кровотока в сосудах тела

Необходимость измерения скорости и направления кровотока

Кровь циркулирует по сосудам с определенной скоростью. От последней зависит не только артериальное давление и метаболические процессы, но и насыщение органов кислородом и необходимыми веществами.

Скорость кровотока (СК) – важный диагностический показатель. С его помощью определяется состояние всей сосудистой сети или отдельных ее участков. По ней же выявляются патологии различных органов.

Отклонение показателей скорости течения крови в сосудистой системе свидетельствует о спазмировании в ее отдельных участках, вероятности налипания холестериновых бляшек, образовании тромбов или повышении вязкости крови.

Закономерности явления

Скорость движения крови по сосудам зависит от количества времени, необходимого для ее прохождения по первому и второму кругу.

Измерение проводится несколькими способами. Один из наиболее распространенных – использование красителя флуоресцеина. Метод заключается во введении вещества в вену левой руки и определении временного промежутка, через который оно обнаруживается в правой.

Средний статистический показатель – 25-30 секунд.

Движение кровотока по сосудистому руслу изучает гемодинамика. В ходе исследований выявлено, что данный процесс является непрерывным в организме человека вследствие разницы давления в сосудах. Прослеживается течение жидкости от участка, где оно высокое, к участку с более низким. Соответственно, имеются места, отличающиеся наименьшей и наибольшей скоростью течения.

Определение значения производится при выявлении двух параметров, описанных ниже.

Объемная скорость

Важным показателем гемодинамических значений является определение объемной скорости кровотока (ОСК). Это количественный показатель жидкости, циркулирующей за определенный временной отрезок сквозь поперечное сечение вен, артерий, капилляров.

ОСК напрямую связана с имеющимся в сосудах давлением и сопротивлением, оказываемым их стенками. Минутный объем движения жидкости по кровеносной системе вычисляется по формуле, учитывающей эти два показателя.

Замкнутость русла дает возможность сделать вывод о том, что через все сосуды, включая крупные артерии и мельчайшие капилляры, в течение минуты протекает одинаковое по объему количество жидкости. Непрерывность этого потока также подтверждает данный факт.

Однако это не свидетельствует об одинаковом объеме крови во всех ответвлениях кровеносного русла на протяжении минуты. Количество зависит от диаметра определенного участка сосудов, что никак не влияет на снабжение кровью органов, так как общее количество жидкости остается одинаковым.

Методы измерения

Определение объемной скорости не так давно еще проводилось так называемыми кровяными часами Людвига.

Более эффективный метод – применение реовазографии. В основу способа положено отслеживание электрических импульсов, связанных с сопротивлением сосудов, проявляющемся в качестве реакции на воздействие тока с высокой частотностью.

При этом отмечается следующая закономерность: увеличение кровенаполнения в определенном сосуде сопровождается снижением его сопротивляемости, при уменьшении давления сопротивление, соответственно, увеличивается.

Эти исследования обладают высокой диагностической ценностью для выявления заболеваний, связанных с сосудами. Для этого выполняется реовазография верхних и нижних конечностей, грудной клетки и таких органов, как почки и печень.

Другой достаточно точный метод – плетизмография. Он представляет собой отслеживание изменений в объеме определенного органа, появляющихся в результате наполнения его кровью. Для регистрации этих колебаний используются разновидности плетизмографов – электрические, воздушные, водные.

Флоуметрия

Этот метод исследования движения кровотока основан на использовании физических принципов. Флоуметр прикладывается к обследуемому участку артерии, что позволяет осуществлять контроль над скоростью кровотока при помощи электромагнитной индукции. Специальный датчик фиксирует показания.

Индикаторный метод

Использование этого способа измерения СК предусматривает введение в исследуемую артерию или орган вещества (индикатора), не вступающего во взаимодействие с кровью и тканями.

Затем через одинаковые временные отрезки (на протяжении 60 секунд) в венозной крови определяется концентрация введенного вещества.

Эти значения используются для построения кривой линии и расчета объема циркулирующей крови.

Данный метод широко применяется с целью выявления патологических состояний сердечной мышцы, мозга и других органов.

Линейная скорость

Показатель позволяет узнать скорость течения жидкости по определенной длине сосудов. Иными словами, это отрезок, который преодолевают компоненты крови в течение минуты.

Линейная скорость изменяется в зависимости от места продвижения элементов крови — в центре кровяного русла или непосредственно у сосудистых стенок. В первом случае она максимальная, во втором – минимальная. Это происходит в результате трения, действующего на компоненты крови внутри сети сосудов.

Скорость на разных участках

Продвижение жидкости по кровеносному руслу напрямую зависит от объема исследуемой части. Так, например:

  1. Самая высокая скорость крови наблюдается в аорте. Это объясняется тем, что тут самая узкая часть сосудистого русла. Линейная скорость крови в аорте — 0.5 м/сек.
  2. Скорость движения по артериям составляет около 0.3 м/секунду. При этом отмечаются практически одинаковые показатели (от 0.3 до 0.4 м/сек) как в сонных, так и в позвоночных артериях.
  3. В капиллярах кровь движется с наименьшей скоростью. Это происходит вследствие того, что суммарный объем капиллярного участка во много раз превышает просвет аорты. Уменьшение доходит до 0.5 м/сек.
  4. Кровь течет по венам со скоростью 0.1- 0.2 м/сек.

Диагностическая информативность отклонений от указанных значений заключается в возможности выявить проблемную зону в венах. Это позволяет своевременно устранить или предотвратить развивающийся в сосуде патологический процесс.

Определение линейной скорости

Использование ультразвука (эффект Доплера) позволяет с точностью определить СК в венах и артериях.

Сущность метода определения скорости данного типа в следующем: на проблемный участок прикрепляют специальный датчик, узнать нужный показатель позволяет изменение частотности звуковых колебаний, отражающих процесс течения жидкости.

Высокая скорость отражает низкую частоту звуковых волн.

В капиллярах скорость определяется с использованием микроскопа. Наблюдение ведется за продвижением по кровяному руслу одного из эритроцитов.

Другие методы

Разнообразие методик позволяет выбрать такую процедуру, которая помогает быстро и точно исследовать проблемный участок.

Индикаторный

При определении линейной скорости также используется индикаторный способ. Применяются меченные радиоактивными изотопами эритроциты.

Процедура предусматривает введение в вену, расположенную в локте, индикаторного вещества и прослеживание его появления в крови аналогичного сосуда, но в другой руке.

Формула Торричелли

Еще одним методом является применение формулы Торричелли. Здесь учитывается свойство пропускной способности сосудов. Есть закономерность: циркуляция жидкости выше в том участке, где имеется наименьшее сечение сосуда. Такой участок — аорта.

Самый широкий суммарный просвет в капиллярах. Исходя из этого, максимальная скорость в аорте (500 мм/сек), минимальная – в капиллярах (0.5 мм/сек).

Использование кислорода

При измерении скорости в легочных сосудах прибегают к особому методу, позволяющему определить ее при помощи кислорода.

Пациенту предлагают сделать глубокий вдох и задержать дыхание. Время появления воздуха в капиллярах уха позволяет с помощью оксиметра определить диагностический показатель.

Средняя для взрослых и детей линейная скорость: прохождение крови по всей системе за 21-22 секунды. Данная норма характерна для спокойного состояния человека. Деятельность, сопровождаемая тяжелой физической нагрузкой, сокращает этот временной промежуток до 10 секунд.

Кровообращение в организме человека — это движение главной биологической жидкости по сосудистой системе. О важности данного процесса говорить не приходится. От состояния кровеносной системы зависит жизнедеятельность всех органов и систем.

Определение скорости кровотока позволяет своевременно выявить патологические процессы и устранить их с помощью адекватного курса терапии.

Источник: https://prososud.ru/krovosnabzhenie/skorost-krovotoka.html

Books-med
Добавить комментарий